Bacopa monnieri (L.) Wettst. (BM) has been traditionally used in Ayurveda for improving memory and cognitive deficits which is also evidenced through experimental and clinical studies. The neuropharmacological properties of BM are attributed to "bacosides", a complex mixture of saponin compounds. BM extracts enriched with bacosides offers commercial advantage due to perceived higher efficacy. However, there is no scientific data to support the same. In the present study, methanolic extract of BM (BME) was compared with bacosides enriched (BME-EF) vis a vis bacosides free fraction (BME-FF). Potential antioxidant and cholinesterase inhibitory activity has been evaluated using in vitro and in vivo methods. BME showed not only the highest anti-amnesic efficacy but also antioxidant and cholinesterase inhibitory activity, followed by either BME-FF or BME-EF. Interestingly, no significant differences were found in between the groups. These findings dispel the notion that bacosides enrichment enhances anti-amnesic efficacy and also suggests the contribution of other components.
Lipoprotein lipase (LPL) plays a central role in triglyceride (TG) metabolism. By catalyzing the hydrolysis of TGs present in TG-rich lipoproteins (TRLs), LPL facilitates TG utilization and regulates circulating TG and TRL concentrations. Until very recently, structural information for LPL was limited to homology models, presumably due to the propensity of LPL to unfold and aggregate. By coexpressing LPL with a soluble variant of its accessory protein glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1 (GPIHBP1) and with its chaperone protein lipase maturation factor 1 (LMF1), we obtained a stable and homogenous LPL/GPIHBP1 complex that was suitable for structure determination. We report here X-ray crystal structures of human LPL in complex with human GPIHBP1 at 2.5-3.0 A resolution, including a structure with a novel inhibitor bound to LPL. Binding of the inhibitor resulted in ordering of the LPL lid and lipid-binding regions and thus enabled determination of the first crystal structure of LPL that includes these important regions of the protein. It was assumed for many years that LPL was only active as a homodimer. The structures and additional biochemical data reported here are consistent with a new report that LPL, in complex with GPIHBP1, can be active as a monomeric 1:1 complex. The crystal structures illuminate the structural basis for LPL-mediated TRL lipolysis as well as LPL stabilization and transport by GPIHBP1.
        
Title: Comparison of three different extracts of Centella asiatica for anti-amnesic, antioxidant and anticholinergic activities: in vitro and in vivo study Arora R, Kumar R, Agarwal A, Reeta KH, Gupta YK Ref: Biomed Pharmacother, 105:1344, 2018 : PubMed
Centella asiatica (CA) has been used by Ayurvedic medical practitioners in India for almost 3000 years. The neuropharmacological properties of CA and its constituents have been studied extensively. Anti-oxidant, free radical scavenging and cholinergic modulatory activities are the reported mechanisms of action for its efficacy in memory disorders. Its medicinal values are mainly attributed to the presence of several triterpenes, namely asiatic acid, madecassic acid, asiaticoside, and madecassoside. The present study was aimed to investigate the role of these triterpenes content in CA extract on the antioxidant, cholinesterase modulation and anti-amnesic properties. The fractions of CA extract enriched for (CAE-EF) and depleted/freed of (CAE-FF) triterpenes contents were compared with methanolic extract (CAE). Both in vitro and in vivo methods for evaluation of antioxidant and anticholinergic activities were used. In vitro, free radical scavenging assays (ABTS, DPPH, NO, NORAC, and ORAC) and cholinesterase (AChE and BuChE) inhibition assays were used. For evaluation of anti-amnesic effect, scopolamine induced amnesia in rats, as the acute model of memory loss was used. Following behavioural assessments (MWM, PA, EPM), biomarkers of oxidative stress (reduced GSH, MDA and SOD activity) and cholinesterase (AChE and BuChE) status were also estimated in cerebral cortex and hippocampus of rat brain. The methanolic extract (CAE) was found to perform best among all three fractions for in vitro free radical scavenging, cholinesterase inhibition, improvement of scopolamine-induced amnesia and also in vivo antioxidant effect and cholinesterase inhibitory activities. Interestingly triterpenes free fraction (CAE-FF) showed better antioxidant activity than triterpenes enriched fraction (CAE-EF) along with comparable anti-amnesic effect. This indicates that triterpenes are not solely responsible for antioxidant activity, cholinesterase inhibitory and anti-amnesic effect of CA.
BACKGROUND: Atrial fibrillation (AF) is commonly associated with congestive heart failure (CHF). The autonomic nervous system is involved in the pathogenesis of both AF and CHF. We examined the role of autonomic remodeling in contributing to AF substrate in CHF. METHODS AND RESULTS: Electrophysiological mapping was performed in the pulmonary veins and left atrium in 38 rapid ventricular-paced dogs (CHF group) and 39 control dogs under the following conditions: vagal stimulation, isoproterenol infusion, beta-adrenergic blockade, acetylcholinesterase (AChE) inhibition (physostigmine), parasympathetic blockade, and double autonomic blockade. Explanted atria were examined for nerve density/distribution, muscarinic receptor and beta-adrenergic receptor densities, and AChE activity. In CHF dogs, there was an increase in nerve bundle size, parasympathetic fibers/bundle, and density of sympathetic fibrils and cardiac ganglia, all preferentially in the posterior left atrium/pulmonary veins. Sympathetic hyperinnervation was accompanied by increases in beta(1)-adrenergic receptor R density and in sympathetic effect on effective refractory periods and activation direction. beta-Adrenergic blockade slowed AF dominant frequency. Parasympathetic remodeling was more complex, resulting in increased AChE activity, unchanged muscarinic receptor density, unchanged parasympathetic effect on activation direction and decreased effect of vagal stimulation on effective refractory period (restored by AChE inhibition). Parasympathetic blockade markedly decreased AF duration. CONCLUSIONS: In this heart failure model, autonomic and electrophysiological remodeling occurs, involving the posterior left atrium and pulmonary veins. Despite synaptic compensation, parasympathetic hyperinnervation contributes significantly to AF maintenance. Parasympathetic and/or sympathetic signaling may be possible therapeutic targets for AF in CHF.
BACKGROUND: Parasympathetic control of the heart is an important component in the regulation of normal cardiac function. However, the anatomic course of parasympathetic innervation of the heart is unclear. OBJECTIVE: The purpose of this study was to apply a gross parasympathetic nerve stain technique to reveal the details of the morphology of the cardiac parasympathetic nervous system. METHODS: Ten whole pig hearts were stained using a histochemical method. Immediately after sacrifice, hearts were placed in a buffered solution containing acetylthiocholine, which precipitates with acetylcholinesterase, allowing identification of cholinergic nerves. The epicardial and endocardial surfaces of the atria and ventricles were examined for nerve thickness and density. RESULTS: In both atria, nerve density was significantly greater on the endocardium, but nerve thickness was significantly greater on the epicardium. The right atrium (RA) was more densely innervated than the left atrium (LA) on the endocardium, whereas the LA was more densely innervated than the RA on the epicardium. In the ventricles, numerous thick cholinergic nerves were clearly identifiable across the epicardium, generally running parallel to the left anterior descending artery. The endocardial surfaces of the ventricles revealed a dense network of fine parasympathetic nerve fibers. As in the atria, nerve density was greater on the ventricular endocardium, but nerve thickness was greater on the epicardium. The right ventricle (RV) was more densely innervated than the left ventricle (LV), whereas the LV endocardium was more densely innervated than the RV endocardium. CONCLUSION: The epicardial and endocardial surfaces of the atria and ventricles are richly innervated by parasympathetic nerves. The density of parasympathetic innervation is heterogeneous across both the epicardial and endocardial surfaces of the heart.
The objective of the study was to investigate the morphology, distribution, and electrophysiological profile of the autonomic fibers that innervate the ligament of Marshall (LOM). Gross anatomical dissections were performed in 10 dogs. Sections of the left vagus nerve, left stellate ganglion, and the LOM were immunostained to identify adrenergic and cholinergic nerves. Hearts were also stained for acetylcholinesterase to identify epicardial cholinergic nerves. In vivo electrophysiological studies were performed in another 10 dogs before and after LOM ablation. The anatomical examination revealed that the LOM is innervated by a branch of the left vagus. Immunohistochemistry confirmed that these nerve bundles are predominantly cholinergic (cholinergic-to-adrenergic ratio of 12.6 +/- 3.9:1). Cholinergic nerves originating in the LOM were found to innervate surrounding left atrial structures, including the pulmonary veins, left atrial appendage, coronary sinus, and posterior left atrial fat pad. Ablation of the LOM significantly attenuated effective refractory period shortening at distant sites, such as pulmonary veins and left atrial appendage, in response to vagal stimulation (vagal-induced ERP decrease in the left atrium: baseline vs. postablation = 17 vs. 4%; P = 0.0056). In conclusion, the LOM contains a predominance of cholinergic nerve fibers. Cholinergic fibers arising from the LOM innervate surrounding structures and contribute to the electrophysiological profile of the left atrium. These findings may provide a basis for the role of the LOM in the genesis and maintenance of atrial fibrillation.