Plant tannins, including condensed tannins (CTs) and hydrolyzable tannins (HTs), are widely distributed in the plant kingdom. To date, tannase (TA) - is a type of tannin acyl-hydrolase hydrolyzing HTs, CT monomer gallates and depsides - has been reported in microbes only. Whether plants express TA remains unknown. Herein, we report plant TA genes. A native Camellia sinensis TA (CsTA) is identified from leaves. Six TAs are cloned from tea, strawberry (Fragariasxsananassa, Fa) and four other crops. Biochemical analysis shows that the native CsTA and six recombinant TAs hydrolyze tannin compounds, depsides and phenolic glycosides. Transcriptional and metabolic analyses reveal that the expression of CsTA is oppositely associated with the accumulation of galloylated catechins. Moreover, the transient overexpression and RNA interference of FaTA are positively associated with the accumulation of ellagitannins in strawberry fruit. Phylogenetic analysis across different kingdoms shows that 29 plant TA homologs are clustered as a plant-specific TA clade in class I carboxylesterases. Further analysis across the angiosperms reveals that these TA genes are dispersed in tannin-rich plants, which share a single phylogenetic origin c. 120 million yr ago. Plant TA is discovered for the first time in the plant kingdom and is shown to be valuable to improve tannin compositions in plants.
The western mosquitofish, Gambusia affinis, is a freshwater poecilid fish native to the southeastern United States but with a global distribution due to widespread human introduction. Gambusia affinis has been used as a model species for a broad range of evolutionary and ecological studies. We sequenced the genome of a male G. affinis to facilitate genetic studies in diverse fields including invasion biology and comparative genetics. We generated Illumina short read data from paired-end libraries and in vitro proximity-ligation libraries. We obtained 54.9x coverage, N50 contig length of 17.6 kb, and N50 scaffold length of 6.65 Mb. Compared to two other species in the Poeciliidae family, G. affinis has slightly fewer genes that have shorter total, exon, and intron length on average. Using a set of universal single-copy orthologs in fish genomes, we found 95.5% of these genes were complete in the G. affinis assembly. The number of transposable elements in the G. affinis assembly is similar to those of closely related species. The high-quality genome sequence and annotations we report will be valuable resources for scientists to map the genetic architecture of traits of interest in this species.
Tea, one of the world's most important beverage crops, provides numerous secondary metabolites that account for its rich taste and health benefits. Here we present a high-quality sequence of the genome of tea, Camellia sinensis var. sinensis (CSS), using both Illumina and PacBio sequencing technologies. At least 64% of the 3.1-Gb genome assembly consists of repetitive sequences, and the rest yields 33,932 high-confidence predictions of encoded proteins. Divergence between two major lineages, CSS and Camellia sinensis var. assamica (CSA), is calculated to approximately 0.38 to 1.54 million years ago (Mya). Analysis of genic collinearity reveals that the tea genome is the product of two rounds of whole-genome duplications (WGDs) that occurred approximately 30 to 40 and approximately 90 to 100 Mya. We provide evidence that these WGD events, and subsequent paralogous duplications, had major impacts on the copy numbers of secondary metabolite genes, particularly genes critical to producing three key quality compounds: catechins, theanine, and caffeine. Analyses of transcriptome and phytochemistry data show that amplification and transcriptional divergence of genes encoding a large acyltransferase family and leucoanthocyanidin reductases are associated with the characteristic young leaf accumulation of monomeric galloylated catechins in tea, while functional divergence of a single member of the glutamine synthetase gene family yielded theanine synthetase. This genome sequence will facilitate understanding of tea genome evolution and tea metabolite pathways, and will promote germplasm utilization for breeding improved tea varieties.
BACKGROUND: Transposable elements are major evolutionary forces which can cause new genome structure and species diversification. The role of transposable elements in the expansion of nucleotide-binding and leucine-rich-repeat proteins (NLRs), the major disease-resistance gene families, has been unexplored in plants. RESULTS: We report two high-quality de novo genomes (Capsicum baccatum and C. chinense) and an improved reference genome (C. annuum) for peppers. Dynamic genome rearrangements involving translocations among chromosomes 3, 5, and 9 were detected in comparison between C. baccatum and the two other peppers. The amplification of athila LTR-retrotransposons, members of the gypsy superfamily, led to genome expansion in C. baccatum. In-depth genome-wide comparison of genes and repeats unveiled that the copy numbers of NLRs were greatly increased by LTR-retrotransposon-mediated retroduplication. Moreover, retroduplicated NLRs are abundant across the angiosperms and, in most cases, are lineage-specific. CONCLUSIONS: Our study reveals that retroduplication has played key roles for the massive emergence of NLR genes including functional disease-resistance genes in pepper plants.
We generated a high-quality reference genome sequence for foxtail millet (Setaria italica). The approximately 400-Mb assembly covers approximately 80% of the genome and >95% of the gene space. The assembly was anchored to a 992-locus genetic map and was annotated by comparison with >1.3 million expressed sequence tag reads. We produced more than 580 million RNA-Seq reads to facilitate expression analyses. We also sequenced Setaria viridis, the ancestral wild relative of S. italica, and identified regions of differential single-nucleotide polymorphism density, distribution of transposable elements, small RNA content, chromosomal rearrangement and segregation distortion. The genus Setaria includes natural and cultivated species that demonstrate a wide capacity for adaptation. The genetic basis of this adaptation was investigated by comparing five sequenced grass genomes. We also used the diploid Setaria genome to evaluate the ongoing genome assembly of a related polyploid, switchgrass (Panicum virgatum).
Vascular plants appeared ~410 million years ago, then diverged into several lineages of which only two survive: the euphyllophytes (ferns and seed plants) and the lycophytes. We report here the genome sequence of the lycophyte Selaginella moellendorffii (Selaginella), the first nonseed vascular plant genome reported. By comparing gene content in evolutionarily diverse taxa, we found that the transition from a gametophyte- to a sporophyte-dominated life cycle required far fewer new genes than the transition from a nonseed vascular to a flowering plant, whereas secondary metabolic genes expanded extensively and in parallel in the lycophyte and angiosperm lineages. Selaginella differs in posttranscriptional gene regulation, including small RNA regulation of repetitive elements, an absence of the trans-acting small interfering RNA pathway, and extensive RNA editing of organellar genes.
We report an improved draft nucleotide sequence of the 2.3-gigabase genome of maize, an important crop plant and model for biological research. Over 32,000 genes were predicted, of which 99.8% were placed on reference chromosomes. Nearly 85% of the genome is composed of hundreds of families of transposable elements, dispersed nonuniformly across the genome. These were responsible for the capture and amplification of numerous gene fragments and affect the composition, sizes, and positions of centromeres. We also report on the correlation of methylation-poor regions with Mu transposon insertions and recombination, and copy number variants with insertions and/or deletions, as well as how uneven gene losses between duplicated regions were involved in returning an ancient allotetraploid to a genetically diploid state. These analyses inform and set the stage for further investigations to improve our understanding of the domestication and agricultural improvements of maize.
Oryza (23 species; 10 genome types) contains the world's most important food crop - rice. Although the rice genome serves as an essential tool for biological research, little is known about the evolution of the other Oryza genome types. They contain a historical record of genomic changes that led to diversification of this genus around the world as well as an untapped reservoir of agriculturally important traits. To investigate the evolution of the collective Oryza genome, we sequenced and compared nine orthologous genomic regions encompassing the Adh1-Adh2 genes (from six diploid genome types) with the rice reference sequence. Our analysis revealed the architectural complexities and dynamic evolution of this region that have occurred over the past approximately 15 million years. Of the 46 intact genes and four pseudogenes in the japonica genome, 38 (76%) fell into eight multigene families. Analysis of the evolutionary history of each family revealed independent and lineage-specific gain and loss of gene family members as frequent causes of synteny disruption. Transposable elements were shown to mediate massive replacement of intergenic space (>95%), gene disruption, and gene/gene fragment movement. Three cases of long-range structural variation (inversions/deletions) spanning several hundred kilobases were identified that contributed significantly to genome diversification.
        
Title: Pathogen corruption and site-directed recombination at a plant disease resistance gene cluster Nagy ED, Bennetzen JL Ref: Genome Res, 18:1918, 2008 : PubMed
The Pc locus of sorghum (Sorghum bicolor) determines dominant sensitivity to a host-selective toxin produced by the fungal pathogen Periconia circinata. The Pc region was cloned by a map-based approach and found to contain three tandemly repeated genes with the structures of nucleotide binding site-leucine-rich repeat (NBS-LRR) disease resistance genes. Thirteen independent Pc-to-pc mutations were analyzed, and each was found to remove all or part of the central gene of the threesome. Hence, this central gene is Pc. Most Pc-to-pc mutations were associated with unequal recombination. Eight recombination events were localized to different sites in a 560-bp region within the approximately 3.7-kb NBS-LRR genes. Because any unequal recombination located within the flanking NBS-LRR genes would have removed Pc, the clustering of cross-over events within a 560-bp segment indicates that a site-directed recombination process exists that specifically targets unequal events to generate LRR diversity in NBS-LRR loci.
We report the draft genome sequence of the model moss Physcomitrella patens and compare its features with those of flowering plants, from which it is separated by more than 400 million years, and unicellular aquatic algae. This comparison reveals genomic changes concomitant with the evolutionary movement to land, including a general increase in gene family complexity; loss of genes associated with aquatic environments (e.g., flagellar arms); acquisition of genes for tolerating terrestrial stresses (e.g., variation in temperature and water availability); and the development of the auxin and abscisic acid signaling pathways for coordinating multicellular growth and dehydration response. The Physcomitrella genome provides a resource for phylogenetic inferences about gene function and for experimental analysis of plant processes through this plant's unique facility for reverse genetics.
Milo disease in sorghum is caused by isolates of the soil-borne fungus Periconia circinata that produce PC-toxin. Susceptibility to milo disease is conditioned by a single, semi-dominant gene, termed Pc. The susceptible allele (Pc) converts to a resistant form (pc) spontaneously at a gametic frequency of 10(-3) to 10(-4). A high-density genetic map was constructed around the Pc locus using DNA markers, allowing the Pc gene to be delimited to a 0.9 cM region on the short arm of sorghum chromosome 9. Physically, the Pc-region was covered by a single BAC clone. Sequence analysis of this BAC revealed twelve gene candidates. Several of the predicted genes in the region are homologous to disease resistance loci, including one NBS-LRR resistance gene analogue that is present in multiple tandem copies. Analysis of pc isolines derived from Pc/Pc sorghum suggests that one or more members of this NBS-LRR gene family are the Pc genes that condition susceptibility.