Reversibly photoswitchable fluorescent proteins find growing applications in cell biology, yet mechanistic details, in particular on the ultrafast photochemical time scale, remain unknown. We employed time-resolved pump-probe absorption spectroscopy on the reversibly photoswitchable fluorescent protein IrisFP in solution to study photoswitching from the nonfluorescent (off) to the fluorescent (on) state. Evidence is provided for the existence of several intermediate states on the pico- and microsecond time scales that are attributed to chromophore isomerization and proton transfer, respectively. Kinetic modeling favors a sequential mechanism with the existence of two excited state intermediates with lifetimes of 2 and 15 ps, the second of which controls the photoswitching quantum yield. In order to support that IrisFP is suited for time-resolved experiments aiming at a structural characterization of these ps intermediates, we used serial femtosecond crystallography at an X-ray free electron laser and solved the structure of IrisFP in its on state. Sample consumption was minimized by embedding crystals in mineral grease, in which they remain photoswitchable. Our spectroscopic and structural results pave the way for time-resolved serial femtosecond crystallography aiming at characterizing the structure of ultrafast intermediates in reversibly photoswitchable fluorescent proteins.
Although x-ray crystallography is the most widely used method for macromolecular structure determination, it does not provide dynamical information, and either experimental tricks or complementary experiments must be used to overcome the inherently static nature of crystallographic structures. Here we used specific x-ray damage during temperature-controlled crystallographic experiments at a third-generation synchrotron source to trigger and monitor (Shoot-and-Trap) structural changes putatively involved in an enzymatic reaction. In particular, a nonhydrolyzable substrate analogue of acetylcholinesterase, the "off-switch" at cholinergic synapses, was radiocleaved within the buried enzymatic active site. Subsequent product clearance, observed at 150 K but not at 100 K, indicated exit from the active site possibly via a "backdoor." The simple strategy described here is, in principle, applicable to any enzyme whose structure in complex with a substrate analogue is available and, therefore, could serve as a standard procedure in kinetic crystallography studies.
Acetylcholinesterase plays a crucial role in nerve-impulse transmission at cholinergic synapses. The apparent paradox that it displays high turnover despite its active site being buried raises cogent questions as to how the traffic of substrates and products to and from the active site can occur so rapidly in such circumstances. Here, a kinetic crystallography strategy aimed at structurally addressing the issue of product traffic in acetylcholinesterase is presented, in which UV-laser-induced cleavage of a photolabile precursor of the enzymatic product analogue arsenocholine, 'caged' arsenocholine, is performed in a temperature-controlled X-ray crystallography regime. The 'caged' arsenocholine was shown to bind at both the active and peripheral sites of acetylcholinesterase. UV irradiation of a complex with acetylcholinesterase during a brief temperature excursion from 100 K to room temperature is most likely to have resulted in a decrease in occupancy by the caged compound. Microspectrophotometric experiments showed that the caged compound had indeed been photocleaved. It is proposed that a fraction of the arsenocholine molecules released within the crystal had been expelled from both the active and the peripheral sites. Partial q-weighted difference refinement revealed a relative movement of the two domains in acetylcholinesterase after photolysis and the room-temperature excursion, resulting in an increase in the active-site gorge volume of 30% and 35% in monomers A and B of the asymmetric unit, respectively. Moreover, an alternative route to the active-site gorge of the enzyme appeared to open. This structural characterization of acetylcholinesterase 'at work' is consistent with the idea that choline exits from the enzyme after catalysis either via the gorge or via an alternative 'backdoor' trajectory.
        
Title: Temperature derivative fluorescence spectroscopy as a tool to study dynamical changes in protein crystals Weik M, Vernede X, Royant A, Bourgeois D Ref: Biophysical Journal, 86:3176, 2004 : PubMed
Motions through the energy landscape of proteins lead to biological function. At temperatures below a dynamical transition (150-250 K), some of these motions are arrested and the activity of some proteins ceases. Here, we introduce the technique of temperature-derivative fluorescence microspectrophotometry to investigate the dynamical behavior of single protein crystals. The observation of glass transitions in thin films of water/glycerol mixtures allowed us to demonstrate the potential of the technique. Then, protein crystals were investigated, after soaking the samples in a small amount of fluorescein. If the fluorophore resides within the crystal channels, temperature-dependent changes in solvent dynamics can be monitored. Alternatively, if the fluorophore binds to the protein, local dynamical transitions within the biomolecule can be probed directly. A clear dynamical transition was observed at 175 K in the active site of crystalline human butyrylcholinesterase. The results suggest that the dynamics of crystalline proteins is strongly dependent on solvent composition and confinement in the crystal channels. Beyond applications in the field of kinetic crystallography, the highly sensitive temperature-derivative fluorescence microspectrophotometry technique opens the way to many studies on the dynamics of biological nanosamples.
Acetylcholinesterase (AChE) is one of nature's fastest enzymes, despite the fact that its three-dimensional structure reveals its active site to be deeply sequestered within the molecule. This raises questions with respect to traffic of substrate to, and products from, the active site, which may be investigated by time-resolved crystallography. In order to address one aspect of the feasibility of performing time-resolved studies on AChE, a data set has been collected using the Laue technique on a trigonal crystal of Torpedo californica AChE soaked with the reversible inhibitor edrophonium, using a total X-ray exposure time of 24 ms. Electron-density maps obtained from the Laue data, which are of surprisingly good quality compared with similar maps from monochromatic data, show essentially the same features. They clearly reveal the bound ligand, as well as a structural change in the conformation of the active-site Ser200 induced upon binding.
BACKGROUND: The guinea pig pancreatic lipase-related protein 2 (GPLRP2) differs from classical pancreatic lipases in that it displays both lipase and phospholipase A1 activities; classical pancreatic lipases have no phospholipase activity. The sequence of GPLRP2 is 63 % identical to that of human pancreatic lipase (HPL), but the so-called lid domain, is much reduced in GPLRP2. A phospholipase A1 from hornet venom (Dolml PLA1) is very similar to HPL and GPLRP2 but is devoid of lipase activity; Dolml PLA1 also contains a reduced lid domain and lacks a region termed the beta9 loop, which is located in the vicinity of the HPL and GPLRP2 active sites. The structure determination of a chimera of GPLRP2 and HPL and domain building of Dolml PLA1 were undertaken to gain a better understanding of the structural parameters responsible for the differences in lipase versus phospholipase activity among these structurally related enzymes. RESULTS: The crystal structure of a chimeric mutant of GPLRP2, consisting of the catalytic domain of GPLRP2 and the C-terminal domain of HPL, has been solved and refined to 2.1 A resolution. This enzyme belongs to the alpha/beta hydrolase fold family and shows high structural homology with classical pancreatic lipases. The active site is closely related to those of serine esterases, except for an unusual geometry of the catalytic triad. Due to the reduced size of the lid domain, the catalytic serine is fully accessible to solvent. Part of the beta9 loop, which stabilizes the lid domain in the closed conformation of the classical HPL, is totally exposed to the solvent and is not visible in the electron-density map. CONCLUSIONS: The structures of the related enzymes, GPLRP2 and HPL and the model of Dolml PLA1, provide insights into the role played by the loops located above the active site in controlling substrate selectivity towards triglycerides or phospholipids. In GPLRP2, the lid domain is reduced in size compared to HPL, and hydrophilic residues are exposed to solvent. GPLRP2 is thus able to accommodate the polar head of phospholipids. The beta9 loop is still present in GPLRP2, making it possible for this enzyme to still accommodate triglycerides. In Dolml PLA1, the beta9 loop is absent, and this enzyme is unable to process triglycerides retaining only the phospholipase A1 activity.