Title: A feruloyl esterase/cellulase integrated biological system for high-efficiency and toxic-chemical free isolation of tobacco based cellulose nanofibers Zhao M, An X, Fan Z, Nie S, Cheng Z, Cao H, Zhang X, Mian MM, Liu H, Liu L Ref: Carbohydr Polym, 313:120885, 2023 : PubMed
Tobacco based cellulose nanofiber (TCNF) is a novel nanocellulose that has recently been used to replace undesirable wood pulp fibers in the preparation of reconstructed tobacco sheets (RTS). However, given the strict requirements for controlling toxic chemical content in tobacco products, there is a global interest in developing a green, efficient, and toxic-chemical free approach to isolate TCNF from tobacco stem as a bioresource. In this study, we propose a creative and environmentally friendly method to efficiently and safely isolate TCNF from tobacco stem pulp, which involves integrated biological pretreatment followed by a facile mechanical defibrillation process. Feruloyl esterase is used to pretreat the stem pulp by disrupting the ether and ester bonds between lignin and polysaccharide carbohydrates within the fiber wall, which effectively facilitates cellulase hydrolysis and swelling of the stem pulp fiber, as well as the following mechanical shearing treatment for TCNF isolation. The results demonstrate that TCNF obtained by the comprehensive feruloyl esterase/cellulase/mechanical process exhibit uniform and well-dispersed nanofiber morphology, higher crystallinity, and stronger mechanical properties than those of the control. The addition of 0.5 % TCNF can replace wood pulp by 18 wt% ~ 25 wt% in the production of RTS samples while maintaining their reasonable strength properties.
        
Title: Natural Antioxidants, Tyrosinase and Acetylcholinesterase Inhibitors from Cercis glabra Leaves Lou Y, Xu T, Cao H, Zhao Q, Zhang P, Shu P Ref: Molecules, 27:, 2022 : PubMed
Cercis glabra is a plant belonging to the legume family, whose flowers and barks are commonly used as food and traditional Chinese medicines. However, its leaves are usually disposed of as wastes. This research comprehensively investigated the bioactive constituents of C. glabra leaves, and two new phenolic, ceroffesters A-B (1-2) and thirteen known compounds (3-15) were isolated. Their structures were elucidated by spectroscopic methods such as nuclear magnetic resonance (1D NMR and 2D NMR), high-resolution electrospray ionization mass spectra (HR-ESI-MS), optical rotatory dispersion (ORD) and electronic circular dichroism (ECD). All of them were assessed for their antioxidant activities through ABTS, DPPH and PTIO methodologies, and evaluated for inhibitory activities against two enzymes (mushroom tyrosinase and acetylcholinesterase). As a result, compounds 3-6, 10 and 13 exhibited evident antioxidant activities. Meanwhile, compounds 5, 10 and 13 showed the most potent tyrosinase inhibitory activities, with IC(50) of 0.64, 0.65 and 0.59 mM, and compared with the positive control of 0.63 mM (kojic acid). In the initial concentration of 1 mg/mL, compounds 3, 5 and 6 demonstrated moderate inhibitory activities against acetylcholinesterase with 85.27 +/- 0.06%, 83.65 +/- 0.48% and 82.21 +/- 0.09%, respectively, compared with the positive control of 91.17 +/- 0.23% (donepezil). These bioactive components could be promising antioxidants, tyrosinase and acetylcholinesterase inhibitors.
        
Title: The Relationship between Intracarotid Plaque Neovascularization and Lp (a) and Lp-PLA2 in Elderly Patients with Carotid Plaque Stenosis Sun C, Xi N, Sun Z, Zhang X, Wang X, Cao H, Jia X Ref: Dis Markers, 2022:6154675, 2022 : PubMed
The aim of this study was to investigate the relationship between carotid plaque neovascularization and lipoprotein (a) [Lp (a)], lipoprotein-associated phospholipase A2 (Lp-PLA2) in elderly patients with carotid plaque stenosis. One hundred elderly patients with carotid plaque stenosis diagnosed in our hospital from January 2020 to January 2022 were retrospectively analyzed and divided into stable (n = 62) and unstable (n = 38) groups according to whether the plaque was stable or not. Plasma Lp (a), Lp-PLA2, apoA, and apoB levels were measured; intraplaque angiogenesis (IPN) scores were examined by contrast-enhanced ultrasound (CEUS) to assess IPN grade in patients; and Pearson correlation was used to analyze the relationship between plasma Lp (a) and Lp-PLA2 levels and plaque characteristics and angiogenesis. The maximum thickness and total thickness of carotid plaque in the unstable group were significantly greater than those in the stable group (P < 0.05); the IPN grade was mainly grade III and IV in the unstable group and grade II in the stable group, and the IPN score was significantly higher in the unstable group than in the stable group (P < 0.05); there was no significant difference in the plasma apoA and apoB levels between the two groups (P > 0.05), and the plasma Lp (a) and Lp-PLA2 levels were significantly higher in the unstable group than in the stable group (P < 0.05); the neovascular grade, plasma Lp-PLA2, and Lp (a) levels were significantly increased (P < 0.05); the plasma Lp (a) and Lp-PLA2 levels were positively correlated with the maximum plaque thickness, total plaque thickness, degree of stenosis, and angiogenesis (P < 0.05). The plasma levels of Lp (a) and Lp-PLA2 are positively correlated with intraplaque angiogenesis, and their levels can reflect the stability of carotid plaques.
        
Title: The Multiple Biological Functions of Dipeptidyl Peptidase-4 in Bone Metabolism Yang Q, Fu B, Luo D, Wang H, Cao H, Chen X, Tian L, Yu X Ref: Front Endocrinol (Lausanne), 13:856954, 2022 : PubMed
Dipeptidyl peptidase-4 (DPP4) is a ubiquitously occurring protease involved in various physiological and pathological processes ranging from glucose homeostasis, immunoregulation, inflammation to tumorigenesis. Recently, the benefits of DPP4 inhibitors as novel hypoglycemic agents on bone metabolism have attracted extensive attraction in many studies, indicating that DPP4 inhibitors may regulate bone homeostasis. The effects of DPP4 on bone metabolism are still unclear. This paper thoroughly reviews the potential mechanisms of DPP4 for interaction with adipokines, bone cells, bone immune cells, and cytokines in skeleton system. This literature review shows that the increased DPP4 activity may indirectly promote bone resorption and inhibit bone formation, increasing the risk of osteoporosis. Thus, bone metabolic balance can be improved by decreasing DPP4 activities. The substantial evidence collected and analyzed in this review supports this implication.
        
Title: A Fluidics-Based Biosensor to Detect and Characterize Inhibition Patterns of Organophosphate to Acetylcholinesterase in Food Materials Pham DS, Nguyen XA, Marsh P, Chu SS, Lau MPH, Nguyen AH, Cao H Ref: Micromachines (Basel), 12:, 2021 : PubMed
A chip-based electrochemical biosensor is developed herein for the detection of organophosphate (OP) in food materials. The principle of the sensing platform is based on the inhibition of dimethoate (DMT), a typical OP that specifically inhibits acetylcholinesterase (AChE) activity. Carbon nanotube-modified gold electrodes functionalized with polydiallyldimethylammonium chloride (PDDA) and oxidized nanocellulose (NC) were investigated for the sensing of OP, yielding high sensitivity. Compared with noncovalent adsorption and deposition in bovine serum albumin, bioconjugation with lysine side chain activation allowed the enzyme to be stable over three weeks at room temperature. The total amount of AChE was quantified, whose activity inhibition was highly linear with respect to DMT concentration. Increased incubation times and/or DMT concentration decreased current flow. The composite electrode showed a sensitivity 4.8-times higher than that of the bare gold electrode. The biosensor was challenged with organophosphate-spiked food samples and showed a limit of detection (LOD) of DMT at 4.1 nM, with a limit of quantification (LOQ) at 12.6 nM, in the linear range of 10 nM to 1000 nM. Such performance infers significant potential for the use of this system in the detection of organophosphates in real samples.
        
Title: Promoting Active Sites in MOF-Derived Homobimetallic Hollow Nanocages as a High-Performance Multifunctional Nanozyme Catalyst for Biosensing and Organic Pollutant Degradation Li S, Hou Y, Chen Q, Zhang X, Cao H, Huang Y Ref: ACS Appl Mater Interfaces, 12:2581, 2020 : PubMed
Nanozymes are one of the ideal alternatives to natural enzymes for various applications. The rational design of nanozymes with improved catalytic activity stimulates increasing attention to address the low activity of current nanozymes. Here, we reported a general strategy to fabricate the Co-based homobimetallic hollow nanocages (HNCs) (C-CoM-HNC, M = Ni, Mn, Cu, and Zn) by ion-assistant solvothermal reaction and subsequent low-temperature calcination from metal-organic frameworks. The C-CoM-HNCs are featured with HNCs composed of interlaced nanosheets with homogeneous bimetallic oxide dispersion. The hierarchical structure and secondary metallic doping endow the C-CoM-HNC highly active sites. In particular, the Cu-doped C-CoCu-HNCs nanostructures exhibit superior performances over the other C-CoM-HNC as both the oxidase mimicking and peroxymonosulfate (PMS) activator. A sensitive bioassay for acetylcholinesterase (AChE) was established based on the excellent oxidase-like activity of C-CoCu-HNC, offering a linear detection range from 0.0001 to 1 mU/mL with an ultralow detection limit of 0.1 mU/L. As the PMS activator, the C-CoCu-HNC was applied for targeted organic pollutant (rhodamine B, RhB) degradation. A highly efficient RhB degradation was realized, along with good adaptability in a wide pH range and good reusability during the eight-cycle run. The results suggest that C-CoCu-HNC holds a practical potential for clinical diagnostics and pollution removal. Further density functional theory calculation reveals that Cu doping leads to a tighter connection and more negative adsorption energy for O2/PMS, as well as an upshifted d-band center in the C-CoCu-HNCs nanostructures. These changes facilitated the adsorption of O2/PMS on the C-CoCu-HNC surface for dissociation. This work not only offers a promising multifunctional nanozyme catalyst for clinical diagnostics and pollution removal but also gives some clues for the further development of novel nanozymes with high catalytic activities.
Enzymes are usually characterized by their evolutionarily conserved catalytic domains; however, this work presents the incidental gain-of-function of an enzyme in a loop region by natural evolution of its amino acids. A bifunctional acetyl ester-xyloside hydrolase (CLH10) was heterologously expressed, purified, and characterized. The primary sequence of CLH10 contains the fragments of the conserved sequence of esterase and glycosidase, which distribute in a mixed type. The crystal structure revealed that the primary sequence folded into two independent structural regions to undertake both acetyl esterase and beta-1,4-xylanase hydrolase functions. CLH10 is capable of cleaving both the beta-1,4-xylosidic bond-linked main chain and the ester bond-linked acetylated side chain of xylan, which renders it valuable because it can degrade acetylated xylan within one enzyme. Significantly, the beta-1,4-xylanase activity of CLH10 appears to have been fortuitously obtained because of the variable Asp10 and Glu139 located in its loop region, which suggested that the exposed loop region might act as a potential hot-spot for the design and generation of promising enzyme function in both directed evolution and rational protein design.
        
Title: Laboratory and field evaluation of the aphidicidal activity of moso bamboo (Phyllostachys pubescens) leaf extract and identification of the active components Gao Q, Shi Y, Liao M, Xiao J, Li X, Zhou L, Liu C, Liu P, Cao H Ref: Pest Manag Sci, 75:3167, 2019 : PubMed
BACKGROUND: Botanical pesticides increasingly play important roles in the control of agricultural pests. In this study, the aphidicidal effect of moso bamboo (Phyllostachys pubescens) extract against mustard aphid was confirmed, the main active compounds identified, and aphidicidal mechanism of the most active compound established. RESULTS: When the treatment concentration was 10.0 g L(-1) , the corrected mortality of bamboo leaf extract (BE) was 53.22 +/- 5.20% and the petroleum ether component of bamboo leaf extract (PE) reached 82.76 +/- 4.50%, which also showed a synergistic effect with imidacloprid. Four flavonoids were identified as the main active components in the BE via activity tracking and phytochemical method. Isoorientin had an LC50 of 313.22 mg L(-1) , and affected the activities of acetylcholinesterase and peroxidase significantly, revealing the possible aphidicidal mechanism. When the treatment of 11.1% PE.imidacloprid was 200 mL, the control effect was 99.07%, which was better than that observed with 10% of imidacloprid or 0.5% of matrine. CONCLUSIONS: These data provide a better understanding of the aphidicidal activity and aphidicidal mechanism of moso bamboo leaf extract and the most active compound, isoorientin. This will help in developing a more effective botanical aphicide. (c) 2019 Society of Chemical Industry.
A noninvasive assessment method for acute or acute-on-chronic liver failure in patients with hepatitis E virus (HEV) infection is urgently needed. We aimed to develop a scoring model for diagnosing HEV patients who developed liver failure (HEV-LF) at different stages. A cross-sectional set of 350 HEV-LF patients were identified and enrolled, and the Guidelines for Diagnosis and Treatment of Liver Failure in China and the Asian Pacific Association for the Study of the Liver were adopted as references. HEV-LFS , a novel scoring model that incorporates data on cholinesterase (CHE), urea nitrogen (UREA), platelets and international normalized ratio was developed using a derived dataset. For diagnosing HEV-LF stages F1 to F3, the HEV-LFS scoring model (F1: 0.87; F2: 0.90; F3: 0.92) had a significantly higher AUROC than did the CLIF-C-ACLFs (F1: 0.65; F2: 0.56; F3: 0.51) and iMELD (F1: 0.70; F2: 0.57; F3: 0.51) scoring models, of which the HEV-LFS scoring model had the best sensitivity and specificity. In addition, the HEV-LFS scoring model was correlated with mortality, length of hospitalization and ICU stay. As the GDTLF score increased, the CHE level decreased and the UREA increased gradually. Encouragingly, a calibration curve showed good agreement between the derivation and validation sets. Notably, we also established a nomogram to facilitate the practical operability of the HEV-LFS scoring model in clinical settings. In conclusion, both CHE and UREA may be indicators for HEV-LF patients. The HEV-LFS scoring model is an efficient and accessible model for classifying HEV-LF at different stages.
Tea, one of the world's most important beverage crops, provides numerous secondary metabolites that account for its rich taste and health benefits. Here we present a high-quality sequence of the genome of tea, Camellia sinensis var. sinensis (CSS), using both Illumina and PacBio sequencing technologies. At least 64% of the 3.1-Gb genome assembly consists of repetitive sequences, and the rest yields 33,932 high-confidence predictions of encoded proteins. Divergence between two major lineages, CSS and Camellia sinensis var. assamica (CSA), is calculated to approximately 0.38 to 1.54 million years ago (Mya). Analysis of genic collinearity reveals that the tea genome is the product of two rounds of whole-genome duplications (WGDs) that occurred approximately 30 to 40 and approximately 90 to 100 Mya. We provide evidence that these WGD events, and subsequent paralogous duplications, had major impacts on the copy numbers of secondary metabolite genes, particularly genes critical to producing three key quality compounds: catechins, theanine, and caffeine. Analyses of transcriptome and phytochemistry data show that amplification and transcriptional divergence of genes encoding a large acyltransferase family and leucoanthocyanidin reductases are associated with the characteristic young leaf accumulation of monomeric galloylated catechins in tea, while functional divergence of a single member of the glutamine synthetase gene family yielded theanine synthetase. This genome sequence will facilitate understanding of tea genome evolution and tea metabolite pathways, and will promote germplasm utilization for breeding improved tea varieties.
Chemotherapy-induced diarrhea (CID), with clinical high incidence, adversely affects the efficacy of cancer treatment and patients' quality of life. Our study demonstrates that the citrus flavonoid hesperetin (Hst) has a superior potential as a new agent to prevent and alleviate CID. In the animal model for irinotecan (CPT-11) induced CID, Hst could selectively inhibit intestinal carboxylesterase (CES2) and thus reduce the local conversion of CPT-11 to cytotoxic SN-38 which causes intestinal toxicity. Oral administration of Hst manifested an excellent anti-diarrhea efficacy, prohibiting 80% of severe and 100% of mild diarrhea in the CPT-11 administered tumor-bearing mice. In addition, a significant attenuation of intestinal inflammation contributed to the anti-diarrhea effect of Hst. Moreover, Hst was found to work synergistically with CPT-11 in tumor inhibition by suppressing the tumor's STAT3 activity and recruiting tumoricidal macrophages into the tumor microenvironment. The anti-intestinal inflammation and anti-STAT3 properties of Hst would contribute its broad benefits to the management of diarrhea caused by other chemo or targeted agents, and more importantly, enhance and reinforce the anti-tumor effects of these agents, to improve patient outcomes.
        
Title: Prolonged neuromuscular block associated with cholinesterase deficiency Zhang C, Cao H, Wan ZG, Wang J Ref: Medicine (Baltimore), 97:e13714, 2018 : PubMed
RATIONALE: Hereditary genetic mutations may cause congenital cholinesterase deficiency. When succinylcholine and mivacurium are applied on cholinesterase-deficient patients during general anesthesia, prolonged postoperative asphyxia occurs, which is an uncommon but very serious complication. PATIENT CONCERNS: A previously healthy 30-year-old female presented prolonged spontaneous breathing recovery after general anesthesia. DIAGNOSES: After the patient's postoperative spontaneous breathing recovery delayed, the plasma cholinesterase was found to be 27 U/L, which was far below the normal level (4000 U/L to 13500 U/L). This patient had no disease that can cause plasma cholinesterase deficiency and was therefore diagnosed as congenital cholinesterase deficiency. INTERVENTIONS AND OUTCOMES: The patient was sent to the intensive care unit (ICU) intubated for mechanical ventilator support, and on the next day the tracheal tube was removed without any complications when her spontaneous respiration resumed. LESSONS: Cholinesterase is an enzyme secreted by the liver involved in many physiological processes in human body. Plasma cholinesterase commonly contains acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). When succinylcholine and mivacurium are applied on patients with cholinesterase-deficiency during general anesthesia, prolonged postoperative asphyxia occurs, which is an uncommon but very serious complication. Lately, new evidences have suggested that hereditary genetic mutations may be responsible for congenital cholinesterase deficiency.
        
Title: A pooled analysis of mesenchymal stem cell-based therapy for liver disease Zhao L, Chen S, Shi X, Cao H, Li L Ref: Stem Cell Res Ther, 9:72, 2018 : PubMed
BACKGROUND: Liver disease is a major cause of death and disability. Mesenchymal stem cells (MSCs) show promise for the treatment of liver disease. However, whether MSC-based therapy is more effective than conventional treatment is unclear, as are the optimal MSC source, the administration frequency, and the most effective MSC delivery route. We therefore undertook a systematic review and meta-analysis of the therapeutic efficacy of MSCs against liver disease and the related factors. METHODS: We systematically searched Medline (PubMed), Cochrane Library, EMBASE, ClinicalTrials.gov, and SinoMed CBM to identify studies published up to June 2017 involving liver disease patients receiving MSC-based therapy and which reported estimates of liver function during the follow-up period. RESULTS: Thirty-nine studies were selected from 672 publications. According to a meta-analysis of 23 controlled studies, compared with conventional treatment MSC therapy significantly improves liver function in patients with liver disease in terms of the model of end-stage liver disease score, albumin, alanine aminotransferase, and total bilirubin levels, and prothrombin time, up to 6 months after administration. However, it has no beneficial effects in terms of prothrombin activity, international normalized ratio, or cholinesterase level. Considerable heterogeneity was identified at most time points. Subgroup analyses showed that a single MSC injection was more effective than multiple injections, MSC administration was more effective via the hepatic artery than the peripheral vein, and MSCs derived from bone marrow were more effective than those derived from the umbilical cord. CONCLUSIONS: MSC-based therapy is relatively safe and improves liver function during the first 6 months after administration. A single injection administration via the hepatic artery and MSCs derived from bone marrow are optimal in terms of improving liver function. However the significant heterogeneity among studies and discontinuous results of the subgroup meta-analysis should be addressed; moreover the long-term efficacy of MSC therapy warrants further investigation.
        
Title: Enhancement of methanol resistance of Yarrowia lipolytica lipase 2 using beta-cyclodextrin as an additive: Insights from experiments and molecular dynamics simulation Cao H, Jiang Y, Zhang H, Nie K, Lei M, Deng L, Wang F, Tan T Ref: Enzyme Microb Technol, 96:157, 2017 : PubMed
The methanol resistance of lipase is a critical parameter in enzymatic biodiesel production. In the present work, the methanol resistance of Yarrowia lipolytica Lipase 2 (YLLIP2) was significantly improved using beta-cyclodextrin (beta-CD) as an additive. According to the results, YLLIP2 with beta-CD exhibited approximately 7000U/mg specific activity in 30wt% methanol for 60min compared with no activity without beta-CD under the same conditions. Molecular dynamics (MD) simulation results indicated that the beta-CD molecules weakened the conformational change of YLLIP2 and maintained a semi-open state of the lid by overcoming the interference caused by methanol molecules. Furthermore, the beta-CD molecule could directly stabilize "pathway" regions (e.g., Asp61-Asp67) and indirectly stabilize "pathway" regions (e.g., Gly44-Phe50) by forming hydrogen bonds with "pathway" regions and nearby "pathway" regions, respectively. The regions stabilized by the beta-CD molecule then prevented the closure of active pockets, thus retaining the enzymatic activity of YLLIP2 with beta-CD in methanol solvent.
The overuse of antibiotics in animal agriculture and medicine has caused a series of potential threats to public health. Macleaya cordata is a medicinal plant species from the Papaveraceae family, providing a safe resource for the manufacture of antimicrobial feed additive for livestock. The active constituents from M. cordata are known to include benzylisoquinoline alkaloids (BIAs) such as sanguinarine (SAN) and chelerythrine (CHE), but their metabolic pathways have yet to be studied in this non-model plant. The active biosynthesis of SAN and CHE in M. cordata was first examined and confirmed by feeding (13)C-labeled tyrosine. To gain further insights, we de novo sequenced the whole genome of M. cordata, the first to be sequenced from the Papaveraceae family. The M. cordata genome covering 378 Mb encodes 22,328 predicted protein-coding genes with 43.5% being transposable elements. As a member of basal eudicot, M. cordata genome lacks the paleohexaploidy event that occurred in almost all eudicots. From the genomics data, a complete set of 16 metabolic genes for SAN and CHE biosynthesis was retrieved, and 14 of their biochemical activities were validated. These genomics and metabolic data show the conserved BIA metabolic pathways in M. cordata and provide the knowledge foundation for future productions of SAN and CHE by crop improvement or microbial pathway reconstruction.
BACKGROUND: Lipoprotein lipase (LPL) deficiency is an autosomal recessive genetic disorder characterized by extreme hypertriglyceridemia, with no cure presently available. The purpose of this study was to test the possibility of using cell therapy to alleviate LPL deficiency. METHODS: The LPL coding sequence was cloned into the MSCV retrovirus vector, after which MSCV-hLPL and MSCV (empty construct without LPL coding sequence) virion suspensions were made using the calcium chloride method. A muscle cell line (C2C12), kidney cell line (HEK293T) and pre-adipocyte cell line (3 T3-L1) were transfected with the virus in order to express recombinant LPL in vitro. Finally, each transfected cell line was injected subcutaneously into nude mice to identify the cell type which could secret recombinant LPL in vivo. Control cells were transfected with the MSCV empty vector. LPL activity was analyzed using a radioimmunoassay. RESULTS: After virus infection, the LPL activity at the cell surface of each cell type was significantly higher than in the control cells, which indicates that all three cell types can be used to generate functional LPL. The transfected cells were injected subcutaneously into nude mice, and the LPL activity of the nearby muscle tissue at the injection site in mice injected with 3 T3-L1 cells was more than 5 times higher at the injection sites than at non-injected control sites. The other two types of cells did not show this trend. CONCLUSION: The subcutaneous injection of adipocytes overexpressing LPL can improve the LPL activity of the adjacent tissue of nude mice. This is a ground-breaking preliminary study for the treatment of LPL deficiency, and lays a good foundation for using cell therapy to correct LPL deficiency.
        
Title: A novel eurythermic and thermostale lipase LipM from Pseudomonas moraviensis M9 and its application in the partial hydrolysis of algal oil Yang W, Cao H, Xu L, Zhang H, Yan Y Ref: BMC Biotechnol, 15:94, 2015 : PubMed
BACKGROUND: Lipases are regularly used in biotechnology to catalyse the hydrolysis of triglycerides and the synthesis of esters. Microbial lipases in particular have been widely used in a variety of industrial applications. However, the current commercial microbial lipases cannot meet industrial demand due to rapid inactivation under harsh conditions. Therefore, in order to identify more stable enzymes, we isolated novel eurythermic and thermostable lipase(s) from Pseudomonas moraviensis M9. METHODS: Cloning of lipM was based on Touchdown PCR and genome walking, and then recombinant LipM was purified by guanidine hydrochloride and the nickel-nitrilotriacetic acid resins affinity chromatography. Finally, the hydrolysis of algal oil by LipM was analyzed by gas chromatograph-mass spectrometer, thin layer chromatography and gas chromatograph. RESULTS: The lipM gene was first cloned from Pseudomonas moraviensis M9 via Touchdown PCR and genome walking. Sequence analysis reveals that LipM is a member of subfamily I.3 of lipases, and the predicted amino acid sequences of LipM has 82 % identity to lipase LipT from Pseudomonas mandelii JR-1, and 54 % identity to lipase PML from Pseudomonas sp. MIS38 and lipase Lip I.3 from Pseudomonas sp. CR-611. LipM was expressed in Escherichia coli, purified from inclusion bodies, and further biochemically characterized. Purified LipM differed significantly from previously reported subfamily I.3 lipases, and was eurythermic between 10 degreesC-95 degreesC. LipM activity was enhanced by Ca(2+), Sr(2+), Mn(2+), and Ba(2+), but sharply inhibited by Cu(2+), Zn(2+), Co(2+), Ni(2+), and EDTA. Compared with other lipases, LipM exhibited medium tolerance to methanol, ethanol, and isopropanol. When applied for hydrolysis of algal oil, LipM could enrich 65.88 % polyunsaturated fatty acids, which include 1.25 % eicosapentaenoic acid, 17.61 % docosapentaenoic acid, and 47.02 % docosahexaenoic acid with derivative glycerides containing 32.46 % diacylglycerols. CONCLUSIONS: A novel eurythermic I.3 subfamily lipase with high tolerance and stability was identified from Pseudomonas moraviensis and biochemically characterized. It will not only improve our understanding of subfamily I.3 lipases, but also provides an ideal biocatalyst for the enrichment of polyunsaturated fatty acids. Pseudomonas moraviensis have been investigated as a potential resource of lipases.
        
Title: The role of temperature and solvent microenvironment on the activity of Yarrowia lipolytica Lipase 2: Insights from molecular dynamics simulation Cao H, Deng L, Lei M, Wang F, Tan TW Ref: J Mol Catal B Enzym, 109:101, 2014 : PubMed
The influence of temperature and solvent on the activity of Yarrowia lipolytica Lipase 2 (YLLIP2) was investigated. This was done by interpreting experimental results with theoretical molecular modeling of the enzyme structure by using molecular dynamic (MD) simulation. The transient open conformation of YLLIP2 was obtained. It was employed for exploring the structural rearrangement of the lid and the catalytic triad (Ser162, Asp230, and His289) at different temperatures and in different solvents. The calculated results indicated that the opened extent of the lid was positively correlated with temperature and the structural rearrangement of the catalytic triad was the crucial factor for the decreased activity of YLLIP2 at higher temperature. The polar solvent molecule approaches the catalytic triad of YLLIP2 more easily and has a stronger interaction with His289 than the non-polar solvent molecule. The interaction between His289 and Asp230 was affected by the higher temperature (333 K) whereas the interaction between His289 and Ser162 was affected by the polar solvent molecule (acetone and ethanol).
        
Title: Biocatalytic Synthesis of Poly(delta-Valerolactone) Using a Thermophilic Esterase from Archaeoglobus fulgidus as Catalyst Cao H, Han H, Li G, Yang J, Zhang L, Yang Y, Fang X, Li Q Ref: Int J Mol Sci, 13:12232, 2012 : PubMed
The ring-opening polymerization of delta-valerolactone catalyzed by a thermophilic esterase from the archaeon Archaeoglobus fulgidus was successfully conducted in organic solvents. The effects of enzyme concentration, temperature, reaction time and reaction medium on monomer conversion and product molecular weight were systematically evaluated. Through the optimization of reaction conditions, poly(delta-valerolactone) was produced in 97% monomer conversion, with a number-average molecular weight of 2225 g/mol, in toluene at 70 degrees C for 72 h. This paper has produced a new biocatalyst for the synthesis of poly(delta-valerolactone), and also deeper insight has been gained into the mechanism of thermophilic esterase-catalyzed ring-opening polymerization.
        
Title: Novel multipotent phenylthiazole-tacrine hybrids for the inhibition of cholinesterase activity, beta-amyloid aggregation and Ca(2+) overload Wang Y, Wang F, Yu JP, Jiang FC, Guan XL, Wang CM, Li L, Cao H, Li MX, Chen JG Ref: Bioorganic & Medicinal Chemistry, 20:6513, 2012 : PubMed
In this study, a series of multipotent phenylthiazole-tacrine hybrids (7a-7e, 8, and 9a-9m) were synthesized and biologically evaluated. Screening results showed that phenylthiazole-tacrine hybrids were potent cholinesterase inhibitors with pIC(50) (-logIC(50)) value ranging from 5.78+/-0.05 to 7.14+/-0.01 for acetylcholinesterase (AChE), and from 5.75+/-0.03 to 10.35+/-0.15 for butyrylcholinesterase (BCHE). The second series of phenylthiazole-tacrine hybrids (9a-9m) could efficiently prevent Abeta(1-42) self-aggregation. The structure-activity relationship revealed that their inhibitory potency relied on the type of middle linker and substitutions at 4'-position of 4-phenyl-2-aminothiazole. In addition, 7a and 7c also displayed the Ca(2+) overload blockade effect in the primary cultured cortical neurons. Consequently, these compounds emerged as promising molecules for the therapy of Alzheimer's disease.
Cooperating mercapto groups with tacrine in a single molecular, novel multifunctional compounds have been designed and synthesized. These mercapto-tacrine derivatives displayed a synergistic pharmacological profile of long-term potentiation enhancement, cholinesterase inhibition, neuroprotection, and less hepatotoxicity, emerging as promising molecules for the therapy of age-related neurodegenerative diseases.
Saccharomyces cerevisiae is frequently used as a bioreactor for conversion of exogenously acquired metabolites into value-added products, but has not been utilized for bioconversion of low-cost lipids such as triacylglycerols (TAGs) because the cells are typically unable to acquire these lipid substrates from the growth media. To help circumvent this limitation, the Yarrowia lipolytica lipase 2 (LIP2) gene was cloned into S. cerevisiae expression vectors and used to generate S. cerevisiae strains that secrete active Lip2 lipase (Lip2p) enzyme into the growth media. Specifically, LIP2 expression was driven by the S. cerevisiae PEX11 promoter, which maintains basal transgene expression levels in the presence of sugars in the culture medium but is rapidly upregulated by fatty acids. Northern blotting, lipase enzyme activity assays, and gas chromatographic measurements of cellular fatty acid composition after lipid feeding all confirmed that cells transformed with the PEX11 promoter-LIP2 construct were responsive to lipids in the media, i.e., cells expressing LIP2 responded rapidly to either free fatty acids or TAGs and accumulated high levels of the corresponding fatty acids in intracellular lipids. These data provided evidence of the creation of a self-regulating positive control feedback loop that allows the cells to upregulate Lip2p production only when lipids are present in the media. Regulated, autonomous production of extracellular lipase activity is a necessary step towards the generation of yeast strains that can serve as biocatalysts for conversion of low-value lipids to value-added TAGs and other novel lipid products.
        
Title: DNA polymorphisms of lipase related genes Cao H, Hegele RA Ref: J Hum Genet, 48:443, 2003 : PubMed
We previously determined sequenced the PNLIP gene encoding pancreatic lipase in cell lines of subjects with clinical deficiency of pancreatic lipase (MIM 246600) and found no putative disease-causing mutations. As part of the ongoing analysis of the genomic DNA of these subjects, we now report the development of genomic amplification primers to sequence the coding regions of CLPS, CEL, PLRP1, and PLRP2, encoding pancreatic co-lipase, carboxyl-ester lipase, and pancreatic-lipase-related proteins-1 and -2, respectively. Whereas we found no putative disease-causing missense or nonsense mutations in these samples, we discovered a total of 13 common polymorphisms (12 single nucleotide polymorphisms) in these four genes. Genotypes of these polymorphisms may be useful in future association analyses.
Pancreatic lipase (EC 3.1.1.3) is an exocrine secretion that hydrolyzes dietary triglycerides in the small intestine. We developed genomic amplification primers to sequence the 13 exons of PNLIP, which encodes pancreatic lipase, in order to screen for possible mutations in cell lines of four children with pancreatic lipase deficiency (OMIM 246600). We found no missense or nonsense mutations in these samples, but we found three silent single-nucleotide polymorphisms (SNPs), namely, 96A/C in exon 3, 486C/T in exon 6, and 1359C/T in exon 13. In 50 normolipidemic Caucasians, the PNLIP 96C and 486T alleles had frequencies of 0.083 and 0.150, respectively. The PNLIP 1359T allele was absent from Caucasian, Chinese, South Asian, and North American aboriginal samples, but had a frequency of 0.085 in an African sample, suggesting that it is a population-specific variant. In an association analysis of 185 African neonates, the PNLIP 1359C/T SNP genotype was significantly associated with concentrations of plasma lipoproteins. These associations were most likely due to linkage disequilibrium with another functional variant at or near PNLIP. Thus, we report three new SNPs for the PNLIP, which may serve as markers for association analyses and for pharmacogenetic studies of pancreatic lipase inhibitors.