ID30A-3 (or MASSIF-3) is a mini-focus (beam size 18 microm x 14 microm) highly intense (2.0 x 10(13) photons s(-1)), fixed-energy (12.81 keV) beamline for macromolecular crystallography (MX) experiments at the European Synchrotron Radiation Facility (ESRF). MASSIF-3 is one of two fixed-energy beamlines sited on the first branch of the canted undulator setup on the ESRF ID30 port and is equipped with a MD2 micro-diffractometer, a Flex HCD sample changer, and an Eiger X 4M fast hybrid photon-counting detector. MASSIF-3 is recommended for collecting diffraction data from single small crystals (=15 microm in one dimension) or for experiments using serial methods. The end-station has been in full user operation since December 2014, and here its current characteristics and capabilities are described.
ID30B is an undulator-based high-intensity, energy-tuneable (6.0-20 keV) and variable-focus (20-200 microm in diameter) macromolecular crystallography (MX) beamline at the ESRF. It was the last of the ESRF Structural Biology Group's beamlines to be constructed and commissioned as part of the ESRF's Phase I Upgrade Program and has been in user operation since June 2015. Both a modified microdiffractometer (MD2S) incorporating an in situ plate screening capability and a new flexible sample changer (the FlexHCD) were specifically developed for ID30B. Here, the authors provide the current beamline characteristics and detail how different types of MX experiments can be performed on ID30B (http://www.esrf.eu/id30b).
Automation of the mounting of cryocooled samples is now a feature of the majority of beamlines dedicated to macromolecular crystallography (MX). Robotic sample changers have been developed over many years, with the latest designs increasing capacity, reliability and speed. Here, the development of a new sample changer deployed at the ESRF beamline MASSIF-1 (ID30A-1), based on an industrial six-axis robot, is described. The device, named RoboDiff, includes a high-capacity dewar, acts as both a sample changer and a high-accuracy goniometer, and has been designed for completely unattended sample mounting and diffraction data collection. This aim has been achieved using a high level of diagnostics at all steps of the process from mounting and characterization to data collection. The RoboDiff has been in service on the fully automated endstation MASSIF-1 at the ESRF since September 2014 and, at the time of writing, has processed more than 20 000 samples completely automatically.