Pollen exine contains complex biopolymers of aliphatic lipids and phenolics. Abnormal development of pollen exine often leads to plant sterility. Molecular mechanisms regulating exine formation have been studied extensively but remain ambiguous. Here we report the analyses of three GDSL esterase/lipase protein genes, OsGELP34, OsGELP110, and OsGELP115, for rice exine formation. OsGELP34 was identified by cloning of a male sterile mutant gene. OsGELP34 encodes an endoplasmic reticulum protein and was mainly expressed in anthers during pollen exine formation. osgelp34 mutant displayed abnormal exine and altered expression of a number of key genes required for pollen development. OsGELP110 was previously identified as a gene differentially expressed in meiotic anthers. OsGELP110 was most homologous to OsGELP115, and the two genes showed similar gene expression patterns. Both OsGELP110 and OsGELP115 proteins were localized in peroxisomes. Individual knockout of OsGELP110 and OsGELP115 did not affect the plant fertility, but double knockout of both genes altered the exine structure and rendered the plant male sterile. OsGELP34 is distant from OsGELP110 and OsGELP115 in sequence, and osgelp34 and osgelp110/osgelp115 mutants were different in anther morphology despite both were male sterile. These results suggested that OsGELP34 and OsGELP110/OsGELP115 catalyze different compounds for pollen exine development. This article is protected by copyright. All rights reserved.
Curacin A (1) is a potent cancer cell toxin obtained from strains of the tropical marine cyanobacterium Lyngbya majuscula found in Curacao. Its structure is unique in that it contains the sequential positioning of a thiazoline and cyclopropyl ring, and it exerts its potent cell toxicity through interaction with the colchicine drug binding site on microtubules. A series of stable isotope-labeled precursors were fed to cultures of curacin A-producing strains and, following NMR analysis, allowed determination of the metabolic origin of all atoms in the natural product (one cysteine, 10 acetate units, two S-adenosyl methionine-derived methyl groups) as well as several unique mechanistic insights. Moreover, these incorporation experiments facilitated an effective gene cloning strategy that allowed identification and sequencing of the approximately 64 kb putative curacin A gene cluster. The metabolic system is comprised of a nonribosomal peptide synthetase (NRPS) and multiple polyketide synthases (PKSs) and shows a very high level of collinearity between genes in the cluster and the predicted biochemical steps required for curacin biosynthesis. Unique features of the cluster include (1) all but one of the PKSs are monomodular multifunctional proteins, (2) a unique gene cassette that contains an HMG-CoA synthase likely responsible for formation of the cyclopropyl ring, and (3) a terminating motif that is predicted to function in both product release and terminal dehydrative decarboxylation.
        
Title: The barbamide biosynthetic gene cluster: a novel marine cyanobacterial system of mixed polyketide synthase (PKS)-non-ribosomal peptide synthetase (NRPS) origin involving an unusual trichloroleucyl starter unit Chang Z, Flatt P, Gerwick WH, Nguyen VA, Willis CL, Sherman DH Ref: Gene, 296:235, 2002 : PubMed
Barbamide was extracted from the marine cyanobacterium Lyngbya majuscula strain 19L as a chlorinated lipopeptide for its potent molluscicidal activity. Precursor incorporation studies indicated that it is derived from acetate, L-phenylalanine, L-leucine and L-cysteine. The gene cluster responsible for biosynthesis of barbamide (bar) was cloned and characterized in this study. DNA sequence analysis of cosmid pLM49 revealed a cluster of 12 open reading frames (barA-barK) extending 26 kb including the expected polyketide synthase and non-ribosomal peptide synthetase modules and tailoring genes. The genetic architecture and domain organization of the bar cluster supports the assignment based on the apparent co-linearity of the systems. The activity assay of adenylation domains of barD (A(D)), barE (A(E)) and barG (A(G2) for module 2) in an amino acid-dependent ATP-pyrophosphate exchange experiment supports the conclusion that barbamide is synthesized from acetate, L-phenylalanine, L-cysteine and L-leucine with trichloroleucine as a direct precursor by a mixed polyketide synthase/non-ribosomal polypeptide synthetase. Assembly of barbamide includes unique biochemical mechanisms for chlorination, one-carbon truncation during chain elongation, E-double bond formation and thiazole ring formation.
        
Title: The mechanism of ageing of phosphonylated acetylcholinesterase Sun M, Chang Z, Shau M, Huang R, Chou T Ref: Journal of Medicinal Chemistry, 22:1306, 1979 : PubMed
1. The extent of potential reactivation of organophosphate-inhibited acetylcholinesterase decreases with time, a phenomenon called ageing. Ageing is due to dealkylation of the alkoxyl group of the residue bound to the enzyme. The rate of ageing is proportional to the electron-donating capacity of the alkyl group. 2. The ageing of phosphophonylated cholinesterase cal also be demonstrated using a phrenic nerve-diaphragm preparation. The same relationship between the rate of ageing and the structure of the alkyl group was observed. 3. Ageing occurs much faster in electrically stimulated preparations than in resting preparations. This may be due to production of a more acidic environment for the enzyme at the active centre by the products of hydrolysis of the acetylcholine released by stimulation.