Glucosinolates (GSLs) are nitrogen- and sulfur-containing metabolites that contribute to human health and plant defense. The biological activities of these molecules are largely dependent on modification of the GSL R-groups derived from their corresponding amino acid precursors. In Arabidopsis seeds, esterification of the R-group of hydroxylated GSLs (OH-GSLs) leads to the accumulation of benzoylated GSLs (BzGSLs) and sinapoylated GSLs (SnGSLs). BzGSLs were thought to be synthesized from OH-GSLs and benzoyl CoA by a BAHD acyltransferase, but no BAHD gene is strongly co-expressed with the two reference genes BZO1 and AOP3 that are required for BzGSL biosynthesis. In contrast, three genes encoding serine carboxypeptidase-like (SCPL) acyltransferases [SCPL5, SCPL17 and SCPL19 (SNG2)] do exhibit strong co-expression. Using a reverse genetic approach, we found that the GSL profile of the scpl5 mutant was identical to that of wild-type, but both BzGSLs and SnGSLs were barely detectable in scpl17 mutants and their amounts were decreased in the sng2 mutant. In addition, both scpl17 and sng2 mutants accumulate the putative BzGSL precursors OH-GSLs and benzoylglucose. The results of further GSL analyses in other phenylpropanoid mutants and benzoate feeding experiments suggested that SCPL17 mediates the acyltransferase reaction directly, while the mutation in sng2 causes a decrease in BzGSLs and SnGSLs via an unknown indirect mechanism. Finally, benzoate feeding experiments using bzo1 mutants and BZO1 biochemical characterization indicated that the in vivo role of BZO1 is to synthesize the benzoate precursor cinnamoyl CoA rather than to generate benzoyl CoA from benzoate and CoA as previously predicted.
Vascular plants appeared ~410 million years ago, then diverged into several lineages of which only two survive: the euphyllophytes (ferns and seed plants) and the lycophytes. We report here the genome sequence of the lycophyte Selaginella moellendorffii (Selaginella), the first nonseed vascular plant genome reported. By comparing gene content in evolutionarily diverse taxa, we found that the transition from a gametophyte- to a sporophyte-dominated life cycle required far fewer new genes than the transition from a nonseed vascular to a flowering plant, whereas secondary metabolic genes expanded extensively and in parallel in the lycophyte and angiosperm lineages. Selaginella differs in posttranscriptional gene regulation, including small RNA regulation of repetitive elements, an absence of the trans-acting small interfering RNA pathway, and extensive RNA editing of organellar genes.
BACKGROUND: The main treatment for overactive bladder (OAB) is the use of anticholinergic drugs initially believed to inhibit the effect of parasympathetic acetylcholine (ACh) on the detrusor; however, there is now evidence to suggest that anticholinergic drugs could interact with sensory pathways. OBJECTIVE: Investigate the role of muscarinic receptors and ACh in modulating bladder afferent sensitivity in the mouse. DESIGN, SETTING, AND PARTICIPANTS: Bladder and surrounding tissue were removed from wild-type male mice, placed in a recording chamber, and continually perfused with fresh oxygenated Krebs solution at 35 degrees C. Bladders were cannulated to allow infusion and intravesical pressure monitoring, and afferent nerve fibres innervating the bladder were dissected and put into a suction electrode for recording. MEASUREMENTS: Multiunit afferent activity and intravesical pressure were recorded at baseline and during bladder distension. Experiments were conducted in the presence of muscarinic agonists and antagonist or in the presence of the cholinesterase inhibitor physostigmine. RESULTS AND LIMITATIONS: Blocking muscarinic receptors using atropine (1 microM) had no effect on spontaneous afferent discharge, the afferent response to bladder distension, or on bladder compliance. However, stimulation of muscarinic receptors directly using bethanechol (100 microM) and carbachol (100 microM) or indirectly using physostigmine (10 microM) significantly inhibited the afferent response to bladder distension and concurrently reduced bladder compliance. Furthermore, prior application of nifedipine prevented the changes in bladder tone but did not prevent the attenuation of afferent responses by bethanechol or physostigmine. CONCLUSIONS: These data indicate that stimulation of muscarinic receptor pathways can depress sensory transduction by a mechanism independent of changes in bladder tone, suggesting that muscarinic receptor pathways and ACh could contribute to normal or pathologic bladder sensation.
Comparative analysis of multiple genomes in a phylogenetic framework dramatically improves the precision and sensitivity of evolutionary inference, producing more robust results than single-genome analyses can provide. The genomes of 12 Drosophila species, ten of which are presented here for the first time (sechellia, simulans, yakuba, erecta, ananassae, persimilis, willistoni, mojavensis, virilis and grimshawi), illustrate how rates and patterns of sequence divergence across taxa can illuminate evolutionary processes on a genomic scale. These genome sequences augment the formidable genetic tools that have made Drosophila melanogaster a pre-eminent model for animal genetics, and will further catalyse fundamental research on mechanisms of development, cell biology, genetics, disease, neurobiology, behaviour, physiology and evolution. Despite remarkable similarities among these Drosophila species, we identified many putatively non-neutral changes in protein-coding genes, non-coding RNA genes, and cis-regulatory regions. These may prove to underlie differences in the ecology and behaviour of these diverse species.
The Arabidopsis (Arabidopsis thaliana) genome encodes 51 proteins annotated as serine carboxypeptidase-like (SCPL) enzymes. Nineteen of these SCPL proteins are highly similar to one another, and represent a clade that appears to be unique to plants. Two of the most divergent proteins within this group have been characterized to date, sinapoyl-glucose (Glc):malate sinapoyltransferase and sinapoyl-Glc:choline sinapoyltransferase. The fact that two of the least related proteins within this clade are acyltransferases rather than true serine carboxypeptidases suggests that some or all of the remaining members of this group may have similar activities. The gene that encodes sinapoyl-Glc:malate sinapoyltransferase (sinapoyl-Glc accumulator1 [SNG1]: At2g22990) is one of five SCPL genes arranged in a cluster on chromosome 2. In this study, an analysis of deletion mutant lines lacking one or more genes in this SCPL gene cluster reveals that three of these genes also encode sinapoyl-Glc-dependent acyltransferases. At2g23000 encodes sinapoyl-Glc:anthocyanin acyltransferase, an enzyme that is required for the synthesis of the sinapoylated anthocyanins in Arabidopsis. At2g23010 encodes an enzyme capable of synthesizing 1,2-disinapoyl-Glc from two molecules of sinapoyl-Glc, an activity shared by SNG1 and At2g22980. Sequence analysis of these SCPL proteins reveals pairwise percent identities that range from 71% to 78%, suggesting that their differing specificities for acyl acceptor substrates are due to changes in a relatively small subset of amino acids. The study of these SCPL proteins provides an opportunity to examine enzyme structure-function relationships and may shed light on the role of evolution of hydroxycinnamate ester metabolism and the SCPL gene family in Arabidopsis and other flowering plants.
The overactive bladder symptom complex (OAB) is the commonest cause of urinary incontinence in older people, and is usually due to underlying detrusor overactivity, and as such is a treatable condition. Older people are a heterogeneous group, which includes fit community-dwelling individuals and those with significant medical comorbidity; thus the requirements of care for this group are many and varied. The International Continence Society definition of the frail elderly, those aged >65 years with continence problems, who by virtue of comorbidity are house-bound or living in an institution, is clearly not applicable to all. However, many conditions begin to appear in later life and practitioners need to be aware of the need to manage these, and their treatment, when dealing with older people. Studies of medication for OAB have included the elderly and there is evidence of an equivalent benefit in younger people. The impact of treatment on the cognitively impaired and those receiving acetylcholinesterase inhibitors is discussed.
1. The effectiveness of antimuscarinic agents in the treatment of the overactive bladder (OAB) syndrome is thought to arise through blockade of bladder muscarinic receptors located on detrusor smooth muscle cells, as well as on nondetrusor structures. 2. Muscarinic M3 receptors are primarily responsible for detrusor contraction. Limited evidence exists to suggest that M2 receptors may have a role in mediating indirect contractions and/or inhibition of detrusor relaxation. In addition, there is evidence that muscarinic receptors located in the urothelium/suburothelium and on afferent nerves may contribute to the pathophysiology of OAB. Blockade of these receptors may also contribute to the clinical efficacy of antimuscarinic agents. 3. Although the role of muscarinic receptors in the bladder, other than M3 receptors, remains unclear, their role in other body systems is becoming increasingly well established, with emerging evidence supporting a wide range of diverse functions. Blockade of these functions by muscarinic receptor antagonists can lead to similarly diverse adverse effects associated with antimuscarinic treatment, with the range of effects observed varying according to the different receptor subtypes affected. 4. This review explores the evolving understanding of muscarinic receptor functions throughout the body, with particular focus on the bladder, gastrointestinal tract, eye, heart, brain and salivary glands, and the implications for drugs used to treat OAB. The key factors that might determine the ideal antimuscarinic drug for treatment of OAB are also discussed. Further research is needed to show whether the M3 selective receptor antagonists have any advantage over less selective drugs, in leading to fewer adverse events.
        
Title: An expression and bioinformatics analysis of the Arabidopsis serine carboxypeptidase-like gene family Fraser CM, Rider LW, Chapple C Ref: Plant Physiol, 138:1136, 2005 : PubMed
The Arabidopsis (Arabidopsis thaliana) genome encodes a family of 51 proteins that are homologous to known serine carboxypeptidases. Based on their sequences, these serine carboxypeptidase-like (SCPL) proteins can be divided into several major clades. The first group consists of 21 proteins which, despite the function implied by their annotation, includes two that have been shown to function as acyltransferases in plant secondary metabolism: sinapoylglucose:malate sinapoyltransferase and sinapoylglucose:choline sinapoyltransferase. A second group comprises 25 SCPL proteins whose biochemical functions have not been clearly defined. Genes encoding representatives from both of these clades can be found in many plants, but have not yet been identified in other phyla. In contrast, the remaining SCPL proteins include five members that are similar to serine carboxypeptidases from a variety of organisms, including fungi and animals. Reverse transcription PCR results suggest that some SCPL genes are expressed in a highly tissue-specific fashion, whereas others are transcribed in a wide range of tissue types. Taken together, these data suggest that the Arabidopsis SCPL gene family encodes a diverse group of enzymes whose functions are likely to extend beyond protein degradation and processing to include activities such as the production of secondary metabolites.
Tetraodon nigroviridis is a freshwater puffer fish with the smallest known vertebrate genome. Here, we report a draft genome sequence with long-range linkage and substantial anchoring to the 21 Tetraodon chromosomes. Genome analysis provides a greatly improved fish gene catalogue, including identifying key genes previously thought to be absent in fish. Comparison with other vertebrates and a urochordate indicates that fish proteins have diverged markedly faster than their mammalian homologues. Comparison with the human genome suggests approximately 900 previously unannotated human genes. Analysis of the Tetraodon and human genomes shows that whole-genome duplication occurred in the teleost fish lineage, subsequent to its divergence from mammals. The analysis also makes it possible to infer the basic structure of the ancestral bony vertebrate genome, which was composed of 12 chromosomes, and to reconstruct much of the evolutionary history of ancient and recent chromosome rearrangements leading to the modern human karyotype.
        
Title: Biochemical characterization of sinapoylglucose:choline sinapoyltransferase, a serine carboxypeptidase-like protein that functions as an acyltransferase in plant secondary metabolism Shirley AM, Chapple C Ref: Journal of Biological Chemistry, 278:19870, 2003 : PubMed
Recently, serine carboxypeptidase-like (SCPL) proteins that catalyze transacylation reactions in plant secondary metabolism have been identified from wild tomato and Arabidopsis. These include sinapoylglucose: choline sinapoyltransferase (SCT), an enzyme that functions in Arabidopsis sinapate ester synthesis. SCT and the other known SCPL acyltransferases all share the conserved serine, aspartic acid, and histidine residues employed for catalysis by classical serine carboxypeptidases, although the importance of these residues and the mechanism by which this class of SCPL proteins catalyze acyltransferase reactions is unknown. To characterize further SCT and its catalytic mechanism, we have employed the Saccharomyces cerevisiae vacuolar protein localization 1 mutant, which secretes the serine carboxypeptidase, carboxypeptidase Y, and other proteins normally targeted to the vacuole. When expressed in this strain, SCT is similarly secreted. SCT has been purified from the yeast medium and used for kinetic characterization of the protein. Immunological analysis of SCT has revealed that the expected 50-kDa mature protein is proteolytically processed in yeast and in planta, most likely resulting in the production of a heterodimer derived from a 30- and 17-kDa polypeptide.
The serine carboxypeptidase-like protein 1- O-sinapoylglucose:malate sinapoyltransferase (SMT) catalyzes the transfer of the sinapoyl moiety of 1- O-sinapoylglucose to malate in the formation of sinapoylmalate in some members of the Brassicaceae. Rabbit polyclonal monospecific antibodies were raised against the recombinant SMT produced in Escherichia coli from the corresponding Arabidopsis thaliana (L.) Heynh. cDNA. Immunoblot analysis of protein from different Arabidopsis tissues showed that the SMT is produced in all plant organs, except in the seeds and young seedlings. The enzyme was most abundant in older seedlings as well as in rosette leaves and the flowering stem of the plant. Minor amounts were found in the cauline leaves, flower buds and siliques. Traces were detected in the root and flowers. Arabidopsis and transgenic tobacco ( Nicotiana tabacum L.) plants expressing the full-length Arabidopsis SMT containing an N-terminal signal peptide showed apparent molecular masses of the protein of 52-55 kDa. The difference of ca. 8 kDa compared to the recombinant protein produced in E. coli was shown to be due to post-translational N-glycosylation of SMT in plants. Immunofluorescent labeling of Arabidopsis leaf sections localized SMT to the central vacuoles of mesophyll and epidermal cells. Comparable leaf sections of an SMT deletion mutant showed no vacuolar immunofluorescent labeling. We conclude that Arabidopsis SMT is synthesized as a precursor protein that is targeted to the endoplasmic reticulum where the signal peptide is removed. The correct N-terminus of the recombinantly produced SMT protein lacking the signal peptide was confirmed by Edman degradation. The protein is probably glycosylated in the Golgi apparatus from where it is subsequently routed to the vacuole.
        
Title: The sng2 mutant of Arabidopsis is defective in the gene encoding the serine carboxypeptidase-like protein sinapoylglucose:choline sinapoyltransferase Shirley AM, McMichael CM, Chapple C Ref: Plant J, 28:83, 2001 : PubMed
Serine carboxypeptidase-like (SCPL) proteins have traditionally been assigned roles in the hydrolytic processing of proteins; however, several SCPL proteins have recently been identified as catalysts in transacylation reactions of plant secondary metabolism. The novel functions of these enzymes suggest a catalytic diversity for plant SCPL proteins that extends beyond simple hydrolysis reactions. Characterization of the Arabidopsis sng2 (sinapoylglucose accumulator 2) mutant has identified another SCPL protein involved in plant secondary metabolism. The sng2 mutant was isolated by screening seed extracts for altered levels of sinapate esters, a group of phenylpropanoid compounds found in Arabidopsis and some other members of the Brassicaceae. Homozygous sng2 seeds accumulate sinapoylglucose instead of sinapoylcholine, and have increased levels of choline and decreased activity of the enzyme sinapoylglucose:choline sinapoyltransferase (SCT). Cloning of the SNG2 gene by a combination of map-based and candidate gene approaches demonstrates that SCT is another member of the growing class of SCPL acyltransferases involved in plant secondary metabolism.
Serine carboxypeptidases contain a conserved catalytic triad of serine, histidine, and aspartic acid active-site residues. These enzymes cleave the peptide bond between the penultimate and C-terminal amino acid residues of their protein or peptide substrates. The Arabidopsis Genome Initiative has revealed that the Arabidopsis genome encodes numerous proteins with homology to serine carboxypeptidases. Although many of these proteins may be involved in protein turnover or processing, the role of virtually all of these serine carboxypeptidase-like (SCPL) proteins in plant metabolism is unknown. We previously identified an Arabidopsis mutant, sng1 (sinapoylglucose accumulator 1), that is defective in synthesis of sinapoylmalate, one of the major phenylpropanoid secondary metabolites accumulated by Arabidopsis and some other members of the Brassicaceae. We have cloned the gene that is defective in sng1 and have found that it encodes a SCPL protein. Expression of SNG1 in Escherichia coli demonstrates that it encodes sinapoylglucose:malate sinapoyltransferase, an enzyme that catalyzes a transesterification instead of functioning like a hydrolase, as do the other carboxypeptidases. This finding suggests that SCPL proteins have acquired novel functions in plant metabolism and provides an insight into the evolution of secondary metabolic pathways in plants.