INTRODUCTION: Cognitive enhancers (ie, cholinesterase inhibitors and memantine) can provide symptomatic benefit for some individuals with dementia; however, there are circumstances in which the risks of continuing treatment may potentially outweigh benefits. The decision to deprescribe cognitive enhancers must consider each patient's preferences, treatment indications, current clinical status and symptoms, prognosis, and dementia type. METHODS: The 5th Canadian Consensus Conference on the Diagnosis and Treatment of Dementia (CCCDTD5) established a subcommittee of experts to review current evidence on the deprescribing of cognitive enhancers. The questions answered by this group included: When should cognitive enhancers be deprescribed in persons with dementia and mild cognitive impairment? How should cognitive enhancers be deprescribed? And, what clinical factors should be considered when deprescribing cognitive enhancers? RESULTS: Patient and care-partner preferences should be incorporated into all decisions to deprescribe cognitive enhancers. Cognitive enhancers should be discontinued in individuals without ongoing evidence of benefit or when the indication for cognitive enhancer use was inappropriate (eg, mild cognitive impairment). Deprescribing should occur gradually and cognitive enhancers should be reinitiated if patients' cognition or function deteriorates. Cognitive enhancers should be continued in individuals whose neuropsychiatric symptoms improve in response to treatment. Clinicians should not deprescribe cognitive enhancers in individuals with significant neuropsychiatric symptoms until symptoms have stabilized. CONCLUSION: CCCDTD5 deprescribing recommendations provide evidence-informed recommendations related to cognitive enhancer deprescribing that will facilitate shared decision making among patients, care partners, and clinicians.
BACKGROUND: Lipoprotein-associated phospholipase A(2) (Lp-PLA(2)) has been implicated in development of atherosclerosis; however, recent randomized trials of Lp-PLA(2) inhibition reported no beneficial effects on vascular diseases. In East Asians, a loss-of-function variant in the PLA2G7 gene can be used to assess the effects of genetically determined lower Lp-PLA(2) METHODS: PLA2G7 V279F (rs76863441) was genotyped in 91 428 individuals randomly selected from the China Kadoorie Biobank of 0.5 M participants recruited in 2004-08 from 10 regions of China, with 7 years' follow-up. Linear regression was used to assess effects of V279F on baseline traits. Logistic regression was conducted for a range of vascular and non-vascular diseases, including 41 ICD-10 coded disease categories. RESULTS: PLA2G7 V279F frequency was 5% overall (range 3-7% by region), and 9691 (11%) participants had at least one loss-of-function variant. V279F was not associated with baseline blood pressure, adiposity, blood glucose or lung function. V279F was not associated with major vascular events [7141 events; odds ratio (OR) = 0.98 per F variant, 95% confidence interval (CI) 0.90-1.06] or other vascular outcomes, including major coronary events (922 events; 0.96, 0.79-1.18) and stroke (5967 events; 1.00, 0.92-1.09). Individuals with V279F had lower risks of diabetes (7031 events; 0.91, 0.84-0.98) and asthma (182 events; 0.53, 0.28-0.98), but there was no association after adjustment for multiple testing. CONCLUSIONS: Lifelong lower Lp-PLA(2) activity was not associated with major risks of vascular or non-vascular diseases in Chinese adults. Using functional genetic variants in large-scale prospective studies with linkage to a range of health outcomes is a valuable approach to inform drug development and repositioning.
BACKGROUND: Lipoprotein-associated phospholipase A(2) (Lp-PLA(2)), an inflammatory enzyme expressed in atherosclerotic plaques, is a therapeutic target being assessed in trials of vascular disease prevention. We investigated associations of circulating Lp-PLA(2) mass and activity with risk of coronary heart disease, stroke, and mortality under different circumstances. METHODS: With use of individual records from 79 036 participants in 32 prospective studies (yielding 17 722 incident fatal or non-fatal outcomes during 474 976 person-years at risk), we did a meta-analysis of within-study regressions to calculate risk ratios (RRs) per 1 SD higher value of Lp-PLA(2) or other risk factor. The primary outcome was coronary heart disease. FINDINGS: Lp-PLA(2) activity and mass were associated with each other (r=0.51, 95% CI 0.47-0.56) and proatherogenic lipids. We noted roughly log-linear associations of Lp-PLA(2) activity and mass with risk of coronary heart disease and vascular death. RRs, adjusted for conventional risk factors, were: 1.10 (95% CI 1.05-1.16) with Lp-PLA(2) activity and 1.11 (1.07-1.16) with Lp-PLA(2) mass for coronary heart disease; 1.08 (0.97-1.20) and 1.14 (1.02-1.27) for ischaemic stroke; 1.16 (1.09-1.24) and 1.13 (1.05-1.22) for vascular mortality; and 1.10 (1.04-1.17) and 1.10 (1.03-1.18) for non-vascular mortality, respectively. RRs with Lp-PLA(2) did not differ significantly in people with and without initial stable vascular disease, apart from for vascular death with Lp-PLA(2) mass. Adjusted RRs for coronary heart disease were 1.10 (1.02-1.18) with non-HDL cholesterol and 1.10 (1.00-1.21) with systolic blood pressure. INTERPRETATION: Lp-PLA(2) activity and mass each show continuous associations with risk of coronary heart disease, similar in magnitude to that with non-HDL cholesterol or systolic blood pressure in this population. Associations of Lp-PLA(2) mass and activity are not exclusive to vascular outcomes, and the vascular associations depend at least partly on lipids. FUNDING: UK Medical Research Council, GlaxoSmithKline, and British Heart Foundation.
BACKGROUND: A large number of observational epidemiological studies have reported generally positive associations between circulating mass and activity levels of lipoprotein-associated phospholipase A2 (Lp-PLA2) and the risk of cardiovascular diseases. Few studies have been large enough to provide reliable estimates in different circumstances, such as in different subgroups (e.g., by age group, sex, or smoking status) or at different Lp-PLA2 levels. Moreover, most published studies have related disease risk only to baseline values of Lp-PLA2 markers (which can lead to substantial underestimation of any risk relationships because of within-person variability over time) and have used different approaches to adjustment for possible confounding factors. OBJECTIVES: By combination of data from individual participants from all relevant observational studies in a systematic 'meta-analysis', with correction for regression dilution (using available data on serial measurements of Lp-PLA2), the Lp-PLA2 Studies Collaboration will aim to characterize more precisely than has previously been possible the strength and shape of the age and sex-specific associations of plasma Lp-PLA2 with coronary heart disease (and, where data are sufficient, with other vascular diseases, such as ischaemic stroke). It will also help to determine to what extent such associations are independent of possible confounding factors and to explore potential sources of heterogeneity among studies, such as those related to assay methods and study design. It is anticipated that the present collaboration will serve as a framework to investigate related questions on Lp-PLA2 and cardiovascular outcomes. METHODS: A central database is being established containing data on circulating Lp-PLA2 values, sex and other potential confounding factors, age at baseline Lp-PLA2 measurement, age at event or at last follow-up, major vascular morbidity and cause-specific mortality. Information about any repeat measurements of Lp-PLA2 and potential confounding factors has been sought to allow adjustment for possible confounding and correction for regression dilution. The analyses will involve age-specific regression models. Synthesis of the available observational studies of Lp-PLA2 will yield information on a total of about 15 000 cardiovascular disease endpoints.
        
Title: A C-terminal mutant of the G protein beta subunit deficient in the activation of phospholipase C-beta Zhang S, Coso OA, Collins R, Gutkind JS, Simonds WF Ref: Journal of Biological Chemistry, 271:20208, 1996 : PubMed
The molecular mechanism by which the G protein betagamma complex modulates multiple mammalian effector pathways is unknown. Homolog-scanning mutagenesis of the G protein beta subunit was employed to identify residues critical for the activation of phospholipase C-beta2 (PLC-beta2). A series of chimeras was made by introducing small segments of the Dictyostelium beta subunit into a background of mammalian beta1 and tested in COS cell cotransfection assays for their ability to activate PLC-beta2 and assemble with mammalian gamma2. A chimera that contained four Dictyostelium beta substitutions within the C-terminal 14 residues was unable to activate PLC-beta2 when cotransfected with gamma, despite its demonstrable expression in a gamma-dependent manner. Cotransfection of the mutant blocked m2 muscarinic receptor activation of PLC by a pertussis toxin-sensitive pathway. This C-terminal mutant retained the ability, however, to stimulate the mitogen-activated protein kinase pathway. These results imply that activation of different betagamma-responsive effectors is mediated by distinct domains.