Cusack Bernadette MMayo Clinic College of Medicine, Departments of Neuroscience and Pharmacology, 4500 San Pablo Road, Jacksonville, FL 32224 USAPhone : Fax : Send E-Mail to Cusack Bernadette M
Carbamates are esters of substituted carbamic acids that react with acetylcholinesterase (AChE) by initially transferring the carbamoyl group to a serine residue in the enzyme active site accompanied by loss of the carbamate leaving group followed by hydrolysis of the carbamoyl enzyme. This hydrolysis, or decarbamoylation, is relatively slow, and half-lives of carbamoylated AChEs range from 4min to more than 30 days. Therefore, carbamates are effective AChE inhibitors that have been developed as insecticides and as therapeutic agents. We show here, in contrast to a previous report, that decarbamoylation rate constants are independent of the leaving group for a series of carbamates with the same carbamoyl group. When the alkyl substituents on the carbamoyl group increased in size from N-monomethyl- to N,N-dimethyl-, N-ethyl-N-methyl-, or N,N-diethyl-, the decarbamoylation rate constants decreased by 4-, 70-, and 800-fold, respectively. We suggest that this relationship arises as a result of active site distortion, particularly in the acyl pocket of the active site. Furthermore, solvent deuterium oxide isotope effects for decarbamoylation decreased from 2.8 for N-monomethylcarbamoyl AChE to 1.1 for N,N-diethylcarbamoyl AChE, indicating a shift in the rate-limiting step from general acid-base catalysis to a likely conformational change in the distorted active site.
        
Title: Monitoring the reaction of carbachol with acetylcholinesterase by thioflavin T fluorescence and acetylthiocholine hydrolysis Rosenberry TL, Sonoda LK, Dekat SE, Cusack B, Johnson JL Ref: Chemico-Biological Interactions, 175:235, 2008 : PubMed
Acetylcholinesterase (AChE) contains a narrow and deep active site gorge with two sites of ligand binding, an acylation site (or A-site) at the base of the gorge and a peripheral site (or P-site) near the gorge entrance. The P-site contributes to catalytic efficiency by transiently binding substrates on their way to the acylation site, where a short-lived acyl enzyme intermediate is produced. Carbamates are very poor substrates that, like other AChE substrates, form an initial enzyme-substrate complex and proceed to an acylated enzyme intermediate which is then hydrolyzed. However, the hydrolysis of the carbamoylated enzyme is slow enough to resolve the acylation and deacylation steps on the catalytic pathway. Here we show that the reaction of carbachol (carbamoylcholine) with AChE can be monitored both with acetylthiocholine as a reporter substrate and with thioflavin T as a fluorescent reporter group. The fluorescence of thioflavin T is strongly enhanced when it binds to the P-site of AChE, and this fluorescence is partially quenched when a second ligand binds to the A-site to form a ternary complex. These fluorescence changes allow not only the monitoring of the course of the carbamoylation reaction but also the determination of carbachol affinities for the A- and P-sites.
        
Title: Analysis of the reaction of carbachol with acetylcholinesterase using thioflavin T as a coupled fluorescence reporter Rosenberry TL, Sonoda LK, Dekat SE, Cusack B, Johnson JL Ref: Biochemistry, 47:13056, 2008 : PubMed
Acetylcholinesterase (AChE) contains a narrow and deep active site gorge with two sites of ligand binding, an acylation site (or A-site) at the base of the gorge and a peripheral site (or P-site) near the gorge entrance. The P-site contributes to catalytic efficiency by transiently binding substrates on their way to the acylation site, where a short-lived acylated enzyme intermediate is produced. Carbamates are very poor substrates that, like other AChE substrates, form an initial enzyme-substrate complex with free AChE (E) and proceed to an acylated enzyme intermediate (EC), which is then hydrolyzed. However, the hydrolysis of EC is slow enough to resolve the acylation and deacylation steps on the catalytic pathway. Here, we focus on the reaction of carbachol (carbamoylcholine) with AChE. The kinetics and thermodynamics of this reaction are of special interest because carbachol is an isosteric analogue of the physiological substrate acetylcholine. We show that the reaction can be monitored with thioflavin T as a fluorescent reporter group. The fluorescence of thioflavin T is strongly enhanced when it binds to the P-site of AChE, and this fluorescence is partially quenched when a second ligand binds to the A-site to form a ternary complex. Analysis of the fluorescence reaction profiles was challenging because four thermodynamic parameters and two fluorescence coefficients were fitted from the combined data both for E and for EC. Respective equilibrium dissociation constants of 6 and 26 mM were obtained for carbachol binding to the A- and P-sites in E and of 2 and 32 mM for carbachol binding to the A- and P-sites in EC. These constants for the binding of carbachol to the P-site are about an order of magnitude larger (i.e., indicating lower affinity) than previous estimates for the binding of acetylthiocholine to the P-site.
        
Title: A novel strategy for protection against organophosphate toxicity: Evolution of cyclic inhibitors with high affinity for the acetylcholinesterase peripheral site Cusack B, Romanovskis P, Johnson JL, Etienne G, Rosenberry TL Ref: Chemico-Biological Interactions, 157-158:370, 2005 : PubMed
Acetylcholinesterase (AChE) hydrolyzes its physiological substrate acetylcholine at one of the highest known catalytic rates. Two sites of ligand interaction have been identified: an acylation site or A-site at the base of the active site gorge, and a peripheral site or P-site at its mouth. Despite a wealth of information about the AChE structure and the role of specific residues in catalysis, an understanding of the catalytic mechanism and the role of the P-site has lagged far behind. In recent years we have clarified how the P- and A-sites interact to promote catalysis. Our studies have revealed that the P-site mediates substrate trapping and that ligand binding to the P-site can result in steric blockade of the A-site as well as allosteric activation. We have demonstrated this activation only for the acylation step of the catalytic reaction, but others have proposed that it involves the deacylation step. To investigate this point, we have measured the reaction of carbamoyl esters (carbamates) with AChE. With these slowly hydrolyzed substrates, the carbamoylation (acylation) and decarbamoylation (deacylation) steps can be resolved and analyzed separately. Carbamoylcholine is one of the closest structural analogs of acetylcholine, and we monitored these steps in continuous mixed assays with acetylthiocholine as a reporter substrate. At high concentrations of carbamoylcholine, decarbamoylation was inhibited but no activation of carbamoylation was observed. However, high concentrations of acetylthiocholine had no effect on the decarbamoylation rate constants. We concluded that the binding of acetylthiocholine to the P-site does not activate deacylation reactions.
        
Title: Tethering of ligands near the active site of acetylcholinesterase mutant H287C: Progress on a new strategy for protection against organophosphate inactivation Cusack B, Johnson JL, Hughes TF, McCullough EH, Fauq A, Romanovskis PV, Spatola AF, Rosenberry TL Ref: In: Cholinesterases in the Second Millennium: Biomolecular and Pathological Aspects, (Inestrosa NC, Campos EO) P. Universidad Catolica de Chile-FONDAP Biomedicina:259 , 2004 : PubMed
Title: Poster (76) Modulation of acetylcholinesterase kinetics employing ligands tethered to the mutant H287C: a model for organophosphate inhibitor desin Cusack B, Johnson JL, Hughes TF, McCullough EH, Romanovskis PV, Spatola AF, Rosenberry TL Ref: In: Cholinesterases in the Second Millennium: Biomolecular and Pathological Aspects, (Inestrosa NC, Campos EO) P. Universidad Catolica de Chile-FONDAP Biomedicina:360, 2004 : PubMed
Title: Substrate activation with a cationic acetanilide substrate in human acetylcholinesterase Johnson JL, Cusack B, Davies MP, Fauq A, Rosenberry TL Ref: In: Cholinesterases in the Second Millennium: Biomolecular and Pathological Aspects, (Inestrosa NC, Campos EO) P. Universidad Catolica de Chile-FONDAP Biomedicina:213 , 2004 : PubMed
Title: Poster (16) Ligand interactions within the active site of acetylcholinesterase Johnson JL, Cusack B, Davies MP, Rosenberry TL Ref: In: Cholinesterases in the Second Millennium: Biomolecular and Pathological Aspects, (Inestrosa NC, Campos EO) P. Universidad Catolica de Chile-FONDAP Biomedicina:328, 2004 : PubMed
Title: Poster (87) Ligand interactions within the active site of acetylcholinesterase Johnson JL, Cusack B, Davies MP, Rosenberry TL Ref: In: Cholinesterases in the Second Millennium: Biomolecular and Pathological Aspects, (Inestrosa NC, Campos EO) P. Universidad Catolica de Chile-FONDAP Biomedicina:366, 2004 : PubMed
Title: Unmasking tandem site interaction in human acetylcholinesterase. Substrate activation with a cationic acetanilide substrate Johnson JL, Cusack B, Davies MP, Fauq A, Rosenberry TL Ref: Biochemistry, 42:5438, 2003 : PubMed
Acetylcholinesterase (AChE) contains a narrow and deep active site gorge with two sites of ligand binding, an acylation site (or A-site) at the base of the gorge, and a peripheral site (or P-site) near the gorge entrance. The P-site contributes to catalytic efficiency by transiently binding substrates on their way to the acylation site, where a short-lived acyl enzyme intermediate is produced. A conformational interaction between the A- and P-sites has recently been found to modulate ligand affinities. We now demonstrate that this interaction is of functional importance by showing that the acetylation rate constant of a substrate bound to the A-site is increased by a factor a when a second molecule of substrate binds to the P-site. This demonstration became feasible through the introduction of a new acetanilide substrate analogue of acetylcholine, 3-(acetamido)-N,N,N-trimethylanilinium (ATMA), for which a = 4. This substrate has a low acetylation rate constant and equilibrates with the catalytic site, allowing a tractable algebraic solution to the rate equation for substrate hydrolysis. ATMA affinities for the A- and P-sites deduced from the kinetic analysis were confirmed by fluorescence titration with thioflavin T as a reporter ligand. Values of a >1 give rise to a hydrolysis profile called substrate activation, and the AChE site-specific mutant W86F, and to a lesser extent wild-type human AChE itself, showed substrate activation with acetylthiocholine as the substrate. Substrate activation was incorporated into a previous catalytic scheme for AChE in which a bound P-site ligand can also block product dissociation from the A-site, and two additional features of the AChE catalytic pathway were revealed. First, the ability of a bound P-site ligand to increase the substrate acetylation rate constant varied with the structure of the ligand: thioflavin T accelerated ATMA acetylation by a factor a(2) of 1.3, while propidium failed to accelerate. Second, catalytic rate constants in the initial intermediate formed during acylation (EAP, where EA is the acyl enzyme and P is the alcohol leaving group cleaved from the ester substrate) may be constrained such that the leaving group P must dissociate before hydrolytic deacylation can occur.
The acetylcholinesterase (AChE) active site consists of a narrow gorge with two separate ligand binding sites: an acylation site (or A-site) at the bottom of the gorge where substrate hydrolysis occurs and a peripheral site (or P-site) at the gorge mouth. AChE is inactivated by organophosphates as they pass through the P-site and phosphorylate the catalytic serine in the A-site. One strategy to protect against organophosphate inactivation is to design cyclic ligands that will bind specifically to the P-site and block the passage of organophosphates but not acetylcholine. To accelerate the process of identifying cyclic compounds with high affinity for the AChE P-site, we introduced a cysteine residue near the rim of the P-site by site-specific mutagenesis to generate recombinant human H287C AChE. Compounds were synthesized with a highly reactive methanethiosulfonyl substituent and linked to this cysteine through a disulfide bond. The advantages of this tethering were demonstrated with H287C AChE modified with six compounds, consisting of cationic trialkylammonium, acridinium, and tacrine ligands with tethers of varying length. Modification by ligands with short tethers had little effect on catalytic properties, but longer tethering resulted in shifts in substrate hydrolysis profiles and reduced affinity for acridinium affinity resin. Molecular modeling calculations indicated that cationic ligands with tethers of intermediate length bound to the P-site, whereas those with long tethers reached the A-site. These binding locations were confirmed experimentally by measuring competitive inhibition constants KI2 for propidium and tacrine, inhibitors specific for the P- and A-sites, respectively. Values of KI2 for propidium increased 30- to 100-fold when ligands had either intermediate or long tethers. In contrast, the value of KI2 for tacrine increased substantially only when ligands had long tethers. These relative changes in propidium and tacrine affinities thus provided a sensitive molecular ruler for assigning the binding locations of the tethered cations.
Inhibitors of the enzyme acetylcholinesterase (AChE) slow and sometimes reverse the cognitive decline experienced by individuals with Alzheimer's disease. Huperzine A, a natural product used in traditional Chinese herbal medicine, and tacrine (Cognex) are among the potent AChE inhibitors used in this treatment, but the search for more selective inhibitors continues. We report herein the synthesis and characterization of (-)-12-amino-3-chloro-9-ethyl-6,7, 10,11-tetrahydro-7,11-methanocycloocta[b]quinoline hydrochloride (huprine X), a hybrid that combines the carbobicyclic substructure of huperzine A with the 4-aminoquinoline substructure of tacrine. Huprine X inhibited human AChE with an inhibition constant K(I) of 26 pM, indicating that it binds to this enzyme with one of the highest affinities yet reported. Under equivalent assay conditions, this affinity was 180 times that of huperzine A, 1200 times that of tacrine, and 40 times that of E2020 (donepezil, Aricept), the most selective AChE inhibitor currently approved for therapeutic use. The association and dissociation rate constants for huprine X with AChE were determined, and the location of its binding site on the enzyme was probed in competition studies with the peripheral site inhibitor propidium and the acylation site inhibitor edrophonium. Huprine X showed no detectable affinity for the edrophonium-AChE complex. In contrast, huprine X did form a ternary complex with propidium and AChE, although its affinity for the free enzyme was found to be 17 times its affinity for the propidium-AChE complex. These data indicated that huprine X binds to the enzyme acylation site in the active site gorge but interferes slightly with the binding of peripheral site ligands.
        
Title: Binding of antidepressants to human brain receptors: focus on newer generation compounds Cusack B, Nelson A, Richelson E Ref: Psychopharmacology (Berl), 114:559, 1994 : PubMed
Using radioligand binding assays and post-mortem normal human brain tissue, we obtained equilibrium dissociation constants (Kds) for 17 antidepressants and two of their metabolites at histamine H1, muscarinic, alpha 1-adrenergic, alpha 2-adrenergic, dopamine D2, serotonin 5-HT1A, and serotonin 5-HT2 receptors. Several newer antidepressants were compared with older drugs. In addition, we studied some antimuscarinic, antiparkinson, antihistamine, and neuroleptic compounds at some of these receptors. For the antidepressants, classical tricyclic antidepressants were the most potent drugs at five of the seven receptors (all but alpha 2-adrenergic and 5-HT1A receptors). The chlorophenylpiperazine derivative antidepressants (etoperidone, nefazodone, trazodone) were the most potent antidepressants at alpha 2-adrenergic and 5-HT1A receptors. Of ten antihistamines tested, none was more potent than doxepin at histamine H1 receptors. At muscarinic receptors antidepressants and antihistamines had a range of potencies, which were mostly weaker than those for antimuscarinics. From the in vitro data, we expect adinazolam, bupropion, fluoxetine, sertraline, tomoxetine, and venlafaxine not to block any of these five receptors in vivo. An antidepressant's potency for blocking a specific receptor is predictive of certain side effects and drug-drug interactions. These studies can provide guidelines for the clinician in the choice of antidepressant.
        
Title: A method for radioligand binding assays using a robotic workstation Cusack B, Richelson E Ref: J Recept Res, 13:123, 1993 : PubMed
Radioligand binding assays provide a powerful tool for screening drug candidates at many receptors. We present a method utilizing a robotic workstation, the Biomek 1000, which automates the tedious and repetitive tasks of these assays. First, the robot handles the serial dilution of up to 8 drugs with 11 concentrations per drug. The sequential addition of diluting buffer, non-radioactively labeled ligand, radioactive ligand, and finally the tissue homogenate or membrane preparation, is fully automated. A novel rack design allows the use of tubes with a maximum capacity of 2 ml, providing a total assay volume of 1 ml. Final filtration on a Brandel cell harvester outfitted with a uniquely designed head allows for processing of 48 samples simultaneously from the rack holder. We have employed this method for the determination of equilibrium dissociation constants (Kds) for drugs at the 5 human muscarinic acetylcholine receptor subtypes expressed in cultured cells, as well as histamine H1, dopamine D2, serotonin 5HT1A, alpha 1- and alpha 2-adrenergic receptors in human brain tissue homogenates. Our results compare favorably with manual methods reported for these receptors, and exhibit a very high degree of reproducibility and throughput, with a minimum of operator input.
        
Title: Antagonism of the five cloned human muscarinic cholinergic receptors expressed in CHO-K1 cells by antidepressants and antihistaminics Stanton T, Bolden-Watson C, Cusack B, Richelson E Ref: Biochemical Pharmacology, 45:2352, 1993 : PubMed
Based on molecular cloning studies, five different muscarinic receptor subtypes exist: m1, m2, m3, m4, and m5. We determined the affinity and selectivity of binding for sixteen antidepressants, two of their metabolites, and three antihistaminics (H1) at these subtypes. Using Chinese hamster ovary cells (CHO-K1) transfected with genes for the human muscarinic receptor subtypes, we obtained equilibrium dissociation constants (Kds) from competitive radioligand binding studies with [3H]-quinuclidinyl benzilate ([3H]QNB) and membranal preparations of these cells. QNB was the most potent compound studied (Kd 30-80 pM). Mequitazine (Kd 6-14 nM) and amitriptyline (Kd 7-16 nM) exhibited the highest affinity among the antihistaminics and antidepressants, respectively. Among the antidepressants examined were the serotonin-selective drugs sertraline and fluoxetine, both of which displayed Kd values > 1 microM. The remaining antidepressants were moderate to weak antagonists with some eliciting no radioligand competition at high concentrations. The compounds studied showed no significant selectivity among the five cloned subtypes.
        
Title: Antagonism by antimuscarinic and neuroleptic compounds at the five cloned human muscarinic cholinergic receptors expressed in Chinese hamster ovary cells Bolden C, Cusack B, Richelson E Ref: Journal of Pharmacology & Experimental Therapeutics, 260:576, 1992 : PubMed
We determined the affinity and selectivity of binding for 24 compounds: nine antimuscarinics (including some antiparkinson drugs) and 15 neuroleptics (including the atypical compounds clozapine, fluperlapine, melperone, rilapine, risperidone, tenilapine, tiosperone and zotepine) at the five human muscarinic receptor subtypes expressed in Chinese hamster ovary cells. Equilibrium dissociation constants (Kd) were obtained from competitive radioligand binding studies with [3H]quinuclidinyl benzilate and membranal preparations of these cells. As expected, QNB had the highest affinity of the compounds studied at the five receptor subtypes and was not selective (Kd ranged from 0.027-0.088 nM). Benztropine had the next highest affinity of the antimuscarinic compounds and thioridazine had the highest affinity of the neuroleptics. Among the antiparkinson drugs, biperiden was the only one selective for the m1 subtype; and among the neuroleptics, the atypical drug clozapine was also selective for the m1 subtype. This selectivity may explain clozapine's unusual efficacy in refractory schizophrenic patients and its low incidence of extrapyramidal side effects. However, because most other atypical neuroleptics studied lacked high affinity and selectivity at muscarinic receptor subtypes, it is likely that other mechanisms are involved as well.
        
Title: Clozapine is a potent and selective muscarinic antagonist at the five cloned human muscarinic acetylcholine receptors expressed in CHO-K1 cells Bolden C, Cusack B, Richelson E Ref: European Journal of Pharmacology, 192:205, 1991 : PubMed