BACKGROUND: Microorganisms drive high rates of methanogenesis and carbon mineralization in wetland ecosystems. These signals are especially pronounced in the Prairie Pothole Region of North America, the tenth largest wetland ecosystem in the world. Sulfate reduction rates up to 22 mumol cm(-3) day(-1) have been measured in these wetland sediments, as well as methane fluxes up to 160 mg m(-2) h(-1)-some of the highest emissions ever measured in North American wetlands. While pore waters from PPR wetlands are characterized by high concentrations of sulfur species and dissolved organic carbon, the constraints on microbial activity are poorly understood. Here, we utilized metagenomics to investigate candidate sulfate reducers and methanogens in this ecosystem and identify metabolic and viral controls on microbial activity. RESULTS: We recovered 162 dsrA and 206 dsrD sequences from 18 sediment metagenomes and reconstructed 24 candidate sulfate reducer genomes assigned to seven phyla. These genomes encoded the potential for utilizing a wide variety of electron donors, such as methanol and other alcohols, methylamines, and glycine betaine. We also identified 37 mcrA sequences spanning five orders and recovered two putative methanogen genomes representing the most abundant taxa-Methanosaeta and Methanoregulaceae. However, given the abundance of Methanofollis-affiliated mcrA sequences, the detection of F420-dependent alcohol dehydrogenases, and millimolar concentrations of ethanol and 2-propanol in sediment pore fluids, we hypothesize that these alcohols may drive a significant fraction of methanogenesis in this ecosystem. Finally, extensive viral novelty was detected, with approximately 80% of viral populations being unclassified at any known taxonomic levels and absent from publicly available databases. Many of these viral populations were predicted to target dominant sulfate reducers and methanogens. CONCLUSIONS: Our results indicate that diversity is likely key to extremely high rates of methanogenesis and sulfate reduction observed in these wetlands. The inferred genomic diversity and metabolic versatility could result from dynamic environmental conditions, viral infections, and niche differentiation in the heterogeneous sediment matrix. These processes likely play an important role in modulating carbon and sulfur cycling in this ecosystem.
Neuronal nicotinic acetylcholine receptor (nAChR) genes (CHRNA5/CHRNA3/CHRNB4) have been reproducibly associated with nicotine dependence, smoking behaviors, and lung cancer risk. Of the few reports that have focused on early smoking behaviors, association results have been mixed. This meta-analysis examines early smoking phenotypes and SNPs in the gene cluster to determine: (1) whether the most robust association signal in this region (rs16969968) for other smoking behaviors is also associated with early behaviors, and/or (2) if additional statistically independent signals are important in early smoking. We focused on two phenotypes: age of tobacco initiation (AOI) and age of first regular tobacco use (AOS). This study included 56,034 subjects (41 groups) spanning nine countries and evaluated five SNPs including rs1948, rs16969968, rs578776, rs588765, and rs684513. Each dataset was analyzed using a centrally generated script. Meta-analyses were conducted from summary statistics. AOS yielded significant associations with SNPs rs578776 (beta = 0.02, P = 0.004), rs1948 (beta = 0.023, P = 0.018), and rs684513 (beta = 0.032, P = 0.017), indicating protective effects. There were no significant associations for the AOI phenotype. Importantly, rs16969968, the most replicated signal in this region for nicotine dependence, cigarettes per day, and cotinine levels, was not associated with AOI (P = 0.59) or AOS (P = 0.92). These results provide important insight into the complexity of smoking behavior phenotypes, and suggest that association signals in the CHRNA5/A3/B4 gene cluster affecting early smoking behaviors may be different from those affecting the mature nicotine dependence phenotype.
CONTEXT: Recent studies have shown an association between cigarettes per day (CPD) and a nonsynonymous single-nucleotide polymorphism in CHRNA5, rs16969968. OBJECTIVE: To determine whether the association between rs16969968 and smoking is modified by age at onset of regular smoking. DATA SOURCES: Primary data. STUDY SELECTION: Available genetic studies containing measures of CPD and the genotype of rs16969968 or its proxy. DATA EXTRACTION: Uniform statistical analysis scripts were run locally. Starting with 94,050 ever-smokers from 43 studies, we extracted the heavy smokers (CPD >20) and light smokers (CPD </=10) with age-at-onset information, reducing the sample size to 33,348. Each study was stratified into early-onset smokers (age at onset </=16 years) and late-onset smokers (age at onset >16 years), and a logistic regression of heavy vs light smoking with the rs16969968 genotype was computed for each stratum. Meta-analysis was performed within each age-at-onset stratum. DATA SYNTHESIS: Individuals with 1 risk allele at rs16969968 who were early-onset smokers were significantly more likely to be heavy smokers in adulthood (odds ratio [OR] = 1.45; 95% CI, 1.36-1.55; n = 13,843) than were carriers of the risk allele who were late-onset smokers (OR = 1.27; 95% CI, 1.21-1.33, n = 19,505) (P = .01). CONCLUSION: These results highlight an increased genetic vulnerability to smoking in early-onset smokers.
The genomes of two Sulfolobus islandicus strains obtained from Icelandic solfataras were sequenced and analyzed. Strain REY15A is a host for a versatile genetic toolbox. It exhibits a genome of minimal size, is stable genetically, and is easy to grow and manipulate. Strain HVE10/4 shows a broad host range for exceptional crenarchaeal viruses and conjugative plasmids and was selected for studying their life cycles and host interactions. The genomes of strains REY15A and HVE10/4 are 2.5 and 2.7 Mb, respectively, and each genome carries a variable region of 0.5 to 0.7 Mb where major differences in gene content and gene order occur. These include gene clusters involved in specific metabolic pathways, multiple copies of VapBC antitoxin-toxin gene pairs, and in strain HVE10/4, a 50-kb region rich in glycosyl transferase genes. The variable region also contains most of the insertion sequence (IS) elements and high proportions of the orphan orfB elements and SMN1 miniature inverted-repeat transposable elements (MITEs), as well as the clustered regular interspaced short palindromic repeat (CRISPR)-based immune systems, which are complex and diverse in both strains, consistent with them having been mobilized both intra- and intercellularly. In contrast, the remainder of the genomes are highly conserved in their protein and RNA gene syntenies, closely resembling those of other S. islandicus and Sulfolobus solfataricus strains, and they exhibit only minor remnants of a few genetic elements, mainly conjugative plasmids, which have integrated at a few tRNA genes lacking introns. This provides a possible rationale for the presence of the introns.
        
Title: Cytochrome P450-derived epoxyeicosatrienoic acids accelerate wound epithelialization and neovascularization in the hairless mouse ear wound model Sander AL, Jakob H, Sommer K, Sadler C, Fleming I, Marzi I, Frank J Ref: Langenbecks Arch Surg, 396:1245, 2011 : PubMed
PURPOSE: Epoxyeicosatrienoic acids (EETs) are known to modulate proliferation and angiogenesis in vitro. Tissue levels of EETs are regulated by the cytochrome P450 (CYP) epoxygenases that generate them as well as by the soluble epoxide hydrolase metabolizes them to their less active diols. The aim of this study was to determine the effect of locally administered EETs (11,12- and 14,15-EETs) and the selective sEH inhibitor (sEHI) trans-4-[4-(3-adamantan-1-ylureido)-cyclohexyloxy]-benzoic acid (t-AUCB) on wound healing in vivo. METHODS: Standardized full thickness dermal wounds were created on the dorsum of hairless mouse ears. Wound epithelialization was directly viewed and measured using intravitalmicroscopy and computerized planimetry every second day until healing was complete. Wound sections were analyzed by immunostaining for endothelial lineage marker CD31, vascular endothelial growth factor (VEGF), and angiogenic cytokine stromal cell-derived factor (SDF) 1alpha on days 2, 4, and 13. RESULTS: Treatment with EETs and t-AUCB, respectively, significantly accelerated wound epithelialization and neovascularization by synergistic upregulation of SDF1alpha and VEGF in vivo. CONCLUSIONS: These findings demonstrated that exogenous CYP-derived EETs and globally decreased EET hydrolysis by sEH inhibition significantly accelerated wound epithelialization and neovascularization in unimpaired healing wounds. Given that hypoxia induces CYP expression and subsequently EET-dependent angiogenesis, EETs and sEHIs provide a promising new class of therapeutics for ischemic non-healing wounds.
Local protein synthesis is required for long-lasting synapse-specific plasticity in cultured Aplysia sensorimotor synapses. To identify synaptically localized mRNAs, we prepared a cDNA library from isolated sensory neurites. By sequence analysis, we estimate that the library contains 263 distinct mRNAs, with 98 of these mRNAs constituting 70% of all clones. The localized transcripts are enriched for mRNAs encoding cytoskeletal elements and components of the translational machinery. In situ hybridization confirms that the mRNAs for at least eight of these transcripts are present in distal neurites. Immunocytochemistry reveals that serotonin regulates the translation of one of the localized mRNAs, that encoding alpha1-tubulin. Our identification of mRNAs encoding cytoskeletal elements suggests that local protein synthesis is required for the growth of new synaptic connections associated with persistent synaptic strengthening. Our finding of mRNAs encoding components of the translational machinery suggests that local protein synthesis serves to increase the translational capacity of synapses.