Genomic data provide valuable insights into pest management issues such as resistance evolution, historical patterns of pest invasions and ongoing population dynamics. We assembled the first reference genome for the redlegged earth mite, Halotydeus destructor (Tucker, 1925), to investigate adaptation to pesticide pressures and demography in its invasive Australian range using whole-genome pool-seq data from regionally distributed populations. Our reference genome comprises 132 autosomal contigs, with a total length of 48.90 Mb. We observed a large complex of ace genes, which has presumably evolved from a long history of organophosphate selection in H. destructor and may contribute towards organophosphate resistance through copy number variation, target-site mutations and structural variants. In the putative ancestral H. destructor ace gene, we identified three target-site mutations (G119S, A201S and F331Y) segregating in organophosphate-resistant populations. Additionally, we identified two new para sodium channel gene mutations (L925I and F1020Y) that may contribute to pyrethroid resistance. Regional structuring observed in population genomic analyses indicates that gene flow in H. destructor does not homogenize populations across large geographic distances. However, our demographic analyses were equivocal on the magnitude of gene flow; the short invasion history of H. destructor makes it difficult to distinguish scenarios of complete isolation vs. ongoing migration. Nonetheless, we identified clear signatures of reduced genetic diversity and smaller inferred effective population sizes in eastern vs. western populations, which is consistent with the stepping-stone invasion pathway of this pest in Australia. These new insights will inform development of diagnostic genetic markers of resistance, further investigation into the multifaceted organophosphate resistance mechanism and predictive modelling of resistance evolution and spread.
Lucilia cuprina is a parasitic fly of major economic importance worldwide. Larvae of this fly invade their animal host, feed on tissues and excretions and progressively cause severe skin disease (myiasis). Here we report the sequence and annotation of the 458-megabase draft genome of Lucilia cuprina. Analyses of this genome and the 14,544 predicted protein-encoding genes provide unique insights into the fly's molecular biology, interactions with the host animal and insecticide resistance. These insights have broad implications for designing new methods for the prevention and control of myiasis.
Trichuris (whipworm) infects 1 billion people worldwide and causes a disease (trichuriasis) that results in major socioeconomic losses in both humans and pigs. Trichuriasis relates to an inflammation of the large intestine manifested in bloody diarrhea, and chronic disease can cause malnourishment and stunting in children. Paradoxically, Trichuris of pigs has shown substantial promise as a treatment for human autoimmune disorders, including inflammatory bowel disease (IBD) and multiple sclerosis. Here we report whole-genome sequencing at approximately 140-fold coverage of adult male and female T. suis and approximately 80-Mb draft assemblies. We explore stage-, sex- and tissue-specific transcription of mRNAs and small noncoding RNAs.
The hookworm Necator americanus is the predominant soil-transmitted human parasite. Adult worms feed on blood in the small intestine, causing iron-deficiency anemia, malnutrition, growth and development stunting in children, and severe morbidity and mortality during pregnancy in women. We report sequencing and assembly of the N. americanus genome (244 Mb, 19,151 genes). Characterization of this first hookworm genome sequence identified genes orchestrating the hookworm's invasion of the human host, genes involved in blood feeding and development, and genes encoding proteins that represent new potential drug targets against hookworms. N. americanus has undergone a considerable and unique expansion of immunomodulator proteins, some of which we highlight as potential treatments against inflammatory diseases. We also used a protein microarray to demonstrate a postgenomic application of the hookworm genome sequence. This genome provides an invaluable resource to boost ongoing efforts toward fundamental and applied postgenomic research, including the development of new methods to control hookworm and human immunological diseases.
Schistosomiasis is a neglected tropical disease caused by blood flukes (genus Schistosoma; schistosomes) and affecting 200 million people worldwide. No vaccines are available, and treatment relies on one drug, praziquantel. Schistosoma haematobium has come into the spotlight as a major cause of urogenital disease, as an agent linked to bladder cancer and as a predisposing factor for HIV/AIDS. The parasite is transmitted to humans from freshwater snails. Worms dwell in blood vessels and release eggs that become embedded in the bladder wall to elicit chronic immune-mediated disease and induce squamous cell carcinoma. Here we sequenced the 385-Mb genome of S. haematobium using Illumina-based technology at 74-fold coverage and compared it to sequences from related parasites. We included genome annotation based on function, gene ontology, networking and pathway mapping. This genome now provides an unprecedented resource for many fundamental research areas and shows great promise for the design of new disease interventions.