Title: Targeting Incretins in Type 2 Diabetes: Role of GLP-1 Receptor Agonists and DPP-4 Inhibitors Pratley RE, Gilbert M Ref: Rev Diabet Stud, 5:73, 2008 : PubMed
Until recently, the pathogenesis of type 2 diabetes mellitus (T2DM) has been conceptualized in terms of the predominant defects in insulin secretion and insulin action. It is now recognized that abnormalities in other hormones also contribute to the development of hyperglycemia. For example, the incretin effect, mediated by glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP), is attenuated in T2DM. Intravenous administration of GLP-1 ameliorates hyperglycemia in patients with T2DM, but an extremely short half-life limits its utility as a therapeutic agent. Strategies to leverage the beneficial effects of GLP-1 include GLP-1 receptor agonists or analogs or dipeptidyl peptidase-4 (DPP-4) inhibitors-agents that act by slowing the inactivation of endogenous GLP-1 and GIP. The GLP-1 agonist exenatide has been shown to improve HbA1c and decrease body weight. However, exenatide is limited by its relatively short pharmacologic half-life, various gastrointestinal (GI) side effects, and the development of antibodies. Studies of a long-acting exenatide formulation suggest that it has improved efficacy and also promotes weight loss. Another prospect is liraglutide, a once-daily human GLP-1 analog. In phase 2 studies, liraglutide lowered HbA1c by up to 1.7% and weight by approximately 3 kg, with apparently fewer GI side effects than exenatide. DPP-4 inhibitors such as sitagliptin and vildagliptin result in clinically significant reductions in HbA1c, and are weight neutral with few GI side effects. This review will provide an overview of current and emerging agents that augment the incretin system with a focus on the role of GLP-1 receptor agonists and DPP-4 inhibitors.
        
Title: Neuroligin 3 is a vertebrate gliotactin expressed in the olfactory ensheathing glia, a growth-promoting class of macroglia Gilbert M, Smith J, Roskams AJ, Auld VJ Ref: Glia, 34:151, 2001 : PubMed
The molecular mechanisms that drive glia-glial interactions and glia-neuronal interactions during the development of the nervous system are poorly understood. A number of membrane-bound cell adhesion molecules have been shown to play a role, although the precise nature of their involvement is unknown. One class of molecules with cell adhesive properties used in the nervous system is the serine-esterase-like family of transmembrane proteins. A member of this class, a glia-specific protein called gliotactin, has been shown to be necessary for the development of the glial sheath in the peripheral nervous system of Drosophila melanogaster. Gliotactin is essential for the development of septate junctions in the glial sheath of individual and neighboring glia. Mutations that remove this protein result in paralysis and eventually death due to a breakdown in the glial-based blood-nerve barrier. To study the role of gliotactin during vertebrate nervous system development, we have isolated a potential vertebrate gliotactin homologue from mice and rat and found that it corresponds to neuroligin 3. Using a combination of RT-PCR and immunohistochemistry, we have found that neuroligin 3 is expressed during the development of the nervous system in many classes of glia. In particular neuroligin 3 is expressed in the olfactory ensheathing glia, retinal astrocytes, Schwann cells, and spinal cord astrocytes in the developing embryo. This expression is developmentally controlled such that in postnatal and adult stages, neuroligin 3 continues to be expressed at high levels in the olfactory ensheathing glia, a highly plastic class of glia that retain many of their developmental characteristics throughout life.
        
Title: Fluorescent phosphonate labels for serine hydrolases. Kinetic and spectroscopic properties of (7-nitrobenz-2-oxa-1,3-diazole)aminoalkyl methylphosphonofluoridates and their conjugates with acetylcholinesterase molecular forms Berman HA, Olshefski DF, Gilbert M, Decker MM Ref: Journal of Biological Chemistry, 260:3462, 1985 : PubMed
The synthesis, kinetic, and spectral characterization of (7-nitrobenz-2-oxa-1,3-diazole)aminoethyl and (7-nitrobenz-2-oxa-1,3-diazole)aminopentyl methylphosphonofluoridate are described. These homologous organophosphorous agents contain the environmentally sensitive 7-nitrobenz-2-oxa-1,3-diazole chromophore. They inhibit acetylcholinesterase from Torpedo at rates exceeding 10(7) M-1 min-1 to form long-lived conjugates with one chromophore/80-kilodalton subunit. The intensity, position, and line width of the absorption spectra of the conjugates and reactivation kinetics in the presence and absence of the bisquaternary oxime 1,1'-trimethylene-bis(4-formylpyridinium bromide) dioxime indicate that these agents form conjugates in which the NBD-aminoalkyl moieties experience distinctive microscopic environments within the active center. NBD-aminoethyl methylphosphono-acetylcholinesterase undergoes oxime-induced as well as spontaneous reactivation at rates that are 3.6 and 35 times faster, respectively, than the corresponding rates measured for the NBD-aminopentyl conjugate. Hence, reactivation exhibits a marked dependence on structure of the methylphosphonate. Fluorescence emission at wavelengths greater than 520 nm is highly quenched and exhibits quantum efficiencies of less than 5%. Absorption maxima for the covalent NBD-aminoethyl methylphosphono-acetylcholinesterase appear at 475-480 nm while those for the corresponding NBD-aminopentyl methylphosphono-acetylcholinesterase appear at 485-490 nm. Bandwidths of the absorption maxima are substantially broader for the acetylcholinesterase adduct with NBD-aminoethyl methylphosphonofluoridate (3870 cm-1) than for the enzyme adduct with NBD-aminopentyl methylphosphonofluoridate (2870 cm-1). The CD spectrum of NBD-aminopentyl methylphosphono-acetylcholinesterase shows optical activity coincident with the shape and position of the absorption spectrum. In contrast, in addition to optically active transitions at the absorption maxima, the CD spectrum of NBD-aminoethyl methylphosphono-acetylcholinesterase shows intense optical activity at 430 nm, a wavelength region coincident with the region of spectral broadening. The spectral properties of alpha-chymotrypsin conjugates formed by reaction with the two probes are different, and the respective spectra differ also from those observed for the acetylcholinesterase conjugates. These results indicate that there is a reciprocal relationship between the structure of the probe and the structure of the active center.