Title: FSH1 overexpression triggers apoptosis in Saccharomyces cerevisiae Gowsalya R, Ravi C, Arul M, Nachiappan V Ref: Antonie Van Leeuwenhoek, 112:1775, 2019 : PubMed
FSH1 belongs to the family of serine hydrolases in yeast and is homologous to the human ovarian tumor suppressor gene (OVAC2). Our preliminary results showed that cells lacking Fsh1p exhibit an increase in cell growth, and a decrease in the expression of AIF1 and NUC1 (apoptosis responsive genes) when compared to the wild type cells. Growth inhibition of cells overexpressing FSH1 is due to induction of cell death associated with cell death markers typical of mammalian apoptosis namely DNA fragmentation, phosphatidylserine externalization, ROS accumulation, Cytochrome c release, and altered mitochondrial membrane potential. When wild type cells were overexpressed with FSH1 there was up regulation of AIF1 level when compared to control cells suggesting that overexpression of FSH1 regulated cell death in yeast.
Family of Serine Hydrolases (FSH) members FSH1, FSH2 and FSH3 in Saccharomyces cerevisiae share conserved sequences with the human candidate tumor suppressor OVCA2. In this study, hydrogen peroxide (H2O2) exposure increased the expression of both mRNA and protein levels of FSH3 in wild-type (WT) yeast cells. The deletion of FSH3 improved the yeast growth rate under H2O2-induction as compared to WT control cells. The overexpression of FSH3 in WT yeast cells caused an apoptotic phenotype, including accumulation of reaction oxygen species, decreased cell viability and cell death. The double deletions fsh1Delta fsh2Delta, fsh1Delta fsh3Delta and fsh2Delta fsh3Delta displayed increased growth compared to WT cells. However, the overexpression of FSH3 effectively inhibited cell growth in all double deletions. Moreover, the overexpression of FSH3 in cells lacking NUC1 did not cause any growth defect in the presence or absence of H2O2. Our results suggest that FSH3 induced apoptosis of yeast in a NUC1 dependent manner.
In silico analysis of the uncharacterized open reading frame YMR210w in Saccharomyces cerevisiae revealed that it possesses both an alpha/beta hydrolase domain (ABHD) and a typical lipase (GXSXG) motif. The purified protein displayed monoacylglycerol (MAG) lipase activity and preferred palmitoyl-MAG. Overexpression of YMR210w in the known MAG lipase mutant yju3Delta clearly revealed that the protein had MAG lipase activity, hence we named the ORF MGL2. Overexpression of YMR210w decreased the cellular triacylglycerol levels. Analysis of the overexpressed strains showed reduction in the lipid droplets number and size. Phenotype studies revealed that the double deletion yju3Deltamgl2Delta displayed a growth defect that was partially restored by MGL2 overexpression.