We have exploited the ability of wild-type (wt) p53 to repress gene expression and produce tumor-selective cytotoxicity using viral-directed enzyme prodrug therapy. Vectors containing either the cytomegalovirus or Rous sarcoma virus promoter regulating transcription of a rabbit liver carboxylesterase (CE) have been constructed. Upon transfection of these plasmids into cells expressing either wt or mutant p53, differential expression of the CE has been observed, resulting in sensitization of the cells expressing the latter protein to the anticancer prodrug irinotecan, 7-ethyl-10-[4-(1-piperidino)-1-piperidino] carb- onyloxycamptothecin (CPT-11). Transduction of isogenic cell lines with adenovirus containing CE under control of the Rous sarcoma virus promoter confirmed the decreased sensitization of cells expressing wtp53 to CPT-11. These studies indicate that the inactivation of wtp53 by mutant p53 in human tumor cells may be sufficient enough to generate a therapeutic window for enhanced cytotoxicity with CPT-11.
Autologous stem cell transplantation is used to rescue cancer patients from myelosuppression caused by high-dose chemotherapy. However, autologous grafts often contain tumor cells that can contribute directly to relapse. Current purging methods are useful when fewer than 1% tumor cells contaminate the bone marrow, and patients with tumor burdens of >1% are considered ineligible for chemotherapy that necessitates stem cell rescue. Using neuroblastoma (NB) as a model system, we developed a method that is effective even with tumor burdens of 10-25%. Mixtures of NB-1691 NB cells and CD34(+) hematopoietic cells purged by this method showed no evidence of viable tumor cells as assessed by clonogenic assays or reverse transcription-PCR for the NB cell markers tyrosine hydroxylase and N-MYC. The efficacy and lack of toxicity of the method were verified using in vivo mouse models. Severe combined immunodeficient mice that received purged cell preparations containing 10% NB-1691 cells survived without evidence of disease for the observation period (>1 year), whereas mice that received unpurged cells developed disseminated disease requiring euthanasia 73-96 days after injection of cells. No evidence of toxicity to the mice was detected by numerous laboratory values for bone marrow, liver, and kidney function, and no difference was seen in the ability of purged cell mixtures versus unmanipulated CD34(+) cells to reconstitute the marrow of non-obese diabetic severe combined immunodeficient mice. In a pilot study, marrow was obtained from eight patients who had >/=1% metastatic tumor burden. All eight samples were purged to the level of detection by reverse transcription-PCR (samples from seven patients) or clonogenic potential (sample from one patient), whichever assay was used. The described adenovirus/rabbit carboxylesterase/CPT-11 (irinotecan, 7-ethyl-10[4-(1-piperidino)-1-piperidino]carbonyloxycamptothecin) virus-directed enzyme prodrug method may be useful for patients whose tumor burdens exceed 1% at the time of stem cell harvest. Assessment of purging efficacy with additional samples from NB patients is ongoing.
One of the advantages of viral-directed enzyme prodrug therapy (VDEPT) is its potential for tumor-specific cytotoxicity. However, the viruses used to deliver cDNAs encoding prodrug-activating enzymes transduce normal cells as well as tumor cells, and several approaches to achieve tumor-specific expression of the delivered cDNAs are being investigated. One such approach is to regulate transcription of the prodrug-activating enzyme with a promoter that is preferentially activated by tumor cells. Published data suggest that the most promising transcription factor/promoter/enhancer combinations are those activated by a tumor-specific transcription factor to retain tumor cell specificity but that are equal in strength to nonspecific viral promoters in their ability to up-regulate target cDNAs. This report identifies MYC-responsive, modified ornithine decarboxylase (ODC) promoter/enhancer sequences that up-regulate target protein expression in tumor cells overexpressing either N-MYC or c-MYC protein. The most efficient of the four constructs assessed contained six additional CACGTG MYC binding sites 5' to the endogenous ODC promoter (R6ODC). Reporter assays with this chimeric promoter/enhancer regulating expression of chloramphenicol acetyltransferase demonstrated 50-250-fold more activity in MYC-expressing cells compared with similar assays with promoterless plasmids. The R6ODC regulatory sequence was approximately equivalent to the CMV promoter in inducing expression of the neomycin resistance gene in c-MYC-expressing SW480 and HT-29 colon carcinoma cells and in N-MYC-expressing NB-1691 neuroblastoma cells. The modified ODC promoter may, therefore, be useful in achieving tissue-specific expression of target proteins in tumor cells that overexpress c- or N-MYC.
Tumor cells that contaminate hematopoietic cell preparations contribute to the relapse of neuroblastoma patients who receive autologous stem cell rescue as a component of therapy. Therefore, effective purging methods are needed. This study details in vitro experiments to develop a viral-directed enzyme prodrug purging method that specifically targets neuroblastoma cells. The approach uses an adenovirus to deliver the cDNA encoding a rabbit liver carboxylesterase that efficiently activates the prodrug irinotecan,7-ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxycamptothecin (CPT-11). The data show that an adenoviral multiplicity of infection of 50 transduces 100% of cultured neuroblastoma cells and primary tumor cells, irrespective of the level of tumor cell line contamination. Exposure of neuroblastoma cell lines or of mixtures of these cell lines with CD34(+) cells at a ratio of 10:90 to replication-deficient AdRSVrCE for 24 h and subsequent exposure of cells to 1-5 microM CPT-11 for 4 h increased the toxicity of CPT-11 to three neuroblastoma cell lines (SJNB-1, NB-1691, and SK-N-SH) from approximately 20-50-fold and eradicated their clonogenic potential. Also, after "purging," RNA for neuroblastoma cell markers (tyrosine hydroxylase, synaptophysin, and N-MYC) was undetectable by reverse transcription-PCR. In contrast, the purging protocol did not affect the number or type of colonies formed by CD34(+) cells in an in vitro progenitor cell assay. No bystander effect on CD34(+) cells was observed. The method described is being investigated for its potential clinical utility, particularly its efficacy for use with patients having relatively high tumor burdens, because no published methods have been shown to be efficacious when the tumor burden exceeds 1%.
Irinotecan, 7-ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxycamptothecin (CPT-11) is activated by carboxylesterases (CE) to yield the potent topoisomerase I inhibitor, SN-38. We have demonstrated previously that a rabbit liver CE is approximately 100-1000-fold more efficient at drug activation than a highly homologous human CE. In an attempt to use rabbit CE expression in combination with CPT-11 for gene therapy approaches for the treatment of cancer, we have developed an adenoviral vector expressing this intracellular CE. After transduction, this virus produces very high levels of CE activity in a panel of human tumor cell lines and results in marked sensitization to CPT-11 of all of the transduced cells. Reductions in IC(50) values for this drug ranged from 11-127-fold. Additionally, comparison with an adenovirus expressing a secreted form of the rabbit CE indicated that a collateral effect could be achieved with reductions in the IC(50) values ranging from 4-19-fold. These data suggest that the described reagents may be suitable for use in vivo in a viral-directed enzyme prodrug therapy approach using CPT-11.
Overexpression of specific transcription factors by tumor cells can be exploited to regulate expression of proteins that induce apoptosis or activate prodrugs, thereby producing tumor-selective toxicity. A majority of advanced-stage neuroblastomas overexpress the transcription factor N-MYC, and this overexpression is associated with poor prognosis. This study describes regulation of expression by N-MYC, via the ornithine decarboxylase (ODC) promoter, of a rabbit liver carboxylesterase (CE) that activates the prodrug CPT-11. Chloramphenicol acetyltransferase reporter assays and CE activity assays in transiently transfected neuroblastoma cell lines (SJNB-1, SJNB-4, NB-1691) and rhabdomyosarcoma cell lines (JR1neo20, JR1Nmyc6, JR1Nmyc9) support this approach as a potential method for sensitizing tumor cells to CPT-11. Clonogenic assays with IMR32 human neuroblastoma cells which express N-MYC and that had been stably transfected with a plasmid containing an ODC promoter/CE cassette corroborated results of enzyme activity assays. Specifically, IMR32.ODC.CE cells expressed approximately eightfold more CE activity than IMR32.CMV.neo cells; and 5 microM CPT-11 reduced the clonogenic potential of IMR32.ODC.CE cells to zero, while 50 microM CPT-11 was required to produce the same effect with IMR32.CMV.neo cells. Current experiments focus on adenoviral delivery of an ODC promoter/CE cDNA cassette for potential virus-directed enzyme prodrug therapy applications.
A series of plasmid vectors have been generated to allow the rapid construction of adenoviral vectors designed to express small RNA sequences. A truncated human U6 gene containing convenient restriction sites has been shown to be expressed at high levels following electroporation into a series of human cell lines. This gene was ligated into a promoterless adenoviral plasmid, and we have generated high titer virus by homologous recombination with adenoviral Addl327 DNA in 293 cells. Recombinant adenovirus containing a hammerhead ribozyme sequence targeted toward the Bcl-2 mRNA has been used to transduce a panel of human tumor cell lines. We have demonstrated high level expression of the recombinant U6 gene containing the ribozyme and reduction of Bcl-2 protein in transduced cells. These plasmids are suitable for the development of adenoviral vectors designed to express both ribozymes and antisense RNA in human cells.