The high substrate specificity of fluoroacetate dehalogenase was explored by using crystallographic analysis fluorescence spectroscopy and theoretical computations. A crystal structure for the Asp104Ala mutant of the enzyme from Burkholderia sp FA1 complexed with fluoroacetate was determined at 1.2 A resolution. The orientation and conformation of bound fluoroacetate is different from those in the crystal structure of the corresponding Asp110Asn mutant of the enzyme from Rhodopseudomonas palustris CGA009 reported recently J Am Chem Soc 2011 133 7461. The fluorescence of the tryptophan residues of the wild-type and Trp150Phe mutant enzymes from Burkholderia sp FA1 incubated with fluoroacetate and chloroacetate was measured to gain information on the environment of the tryptophan residues. The environments of the tryptophan residues were found to be different between the fluoroacetate and chloroacetate-bound enzymes this would come from different binding modes of these two substrates in the active site. Docking simulations and QM/MM optimizations were performed to predict favorable conformations and orientations of the substrates. The F atom of the substrate is oriented toward Arg108 in the most stable enzyme-fluoroacetate complex. This is a stable but unreactive conformation in which the small O-C-F angle is not suitable for the S(N)2 displacement of the F ion. The cleavage of the C-F bond is initiated by the conformational change of the substrate to a near attack conformation NAC in the active site The second lowest energy conformation is appropriate for NAC the C-O distance and the O-C-F angle are reasonable for the S(N 2 reaction. The activation energy is greatly reduced in this conformation because of three hydrogen bonds between the leaving F atom and surrounding amino acid residues. Chloroacetate cannot reach the reactive conformation due to the longer C-Cl bond this results in an increase of the activation energy despite the weaker C-Cl bond.
Fluoroacetate dehalogenase catalyzes the hydrolytic defluorination of fluoroacetate to produce glycolate. The enzyme is unique in that it catalyzes the cleavage of a carbon-fluorine bond of an aliphatic compound: the bond energy of the carbon-fluorine bond is among the highest found in natural products. The enzyme also acts on chloroacetate, although much less efficiently. We here determined the X-ray crystal structure of the enzyme from Burkholderia sp. strain FA1 as the first experimentally determined three-dimensional structure of fluoroacetate dehalogenase. The enzyme belongs to the alpha/beta hydrolase superfamily and exists as a homodimer. Each subunit consists of core and cap domains. The catalytic triad, Asp104-His271-Asp128, of which Asp104 serves as the catalytic nucleophile, was found in the core domain at the domain interface. The active site was composed of Phe34, Asp104, Arg105, Arg108, Asp128, His271, and Phe272 of the core domain and Tyr147, His149, Trp150, and Tyr212 of the cap domain. An electron density peak corresponding to a chloride ion was found in the vicinity of the N(epsilon1) atom of Trp150 and the N(epsilon2) atom of His149, suggesting that these are the halide ion acceptors. Site-directed replacement of each of the active-site residues, except for Trp150, by Ala caused the total loss of the activity toward fluoroacetate and chloroacetate, whereas the replacement of Trp150 caused the loss of the activity only toward fluoroacetate. An interaction between Trp150 and the fluorine atom is probably an absolute requirement for the reduction of the activation energy for the cleavage of the carbon-fluorine bond.
BACKGROUND:
The N-terminal pyroglutamyl (pGlu) residue of peptide hormones, such as thyrotropin-releasing hormone (TRH) and luteinizing hormone releasing hormone (LH-RH), confers resistance to proteolysis by conventional aminopeptidases. Specialized pyroglutamyl peptidases (PGPs) are able to cleave an N-terminal pyroglutamyl residue and thus control hormonal signals. Until now, no direct or homology-based three-dimensional structure was available for any PGP.
RESULTS:
The crystal structure of pyroglutamyl peptidase I (PGP-I) from Bacillus amyloliquefaciens has been determined to 1.6 A resolution. The crystallographic asymmetric unit of PGP-I is a tetramer of four identical monomers related by noncrystallographic 222 symmetry. The protein folds into an alpha/beta globular domain with a hydrophobic core consisting of a twisted beta sheet surrounded by five alpha helices. The structure allows the function of most of the conserved residues in the PGP-I family to be identified. The catalytic triad comprises Cys144, His168 and Glu81.
CONCLUSIONS:
The catalytic site does not have a conventional oxyanion hole, although Cys144, the sidechain of Arg91 and the dipole of an alpha helix could all stabilize a negative charge. The catalytic site has an S1 pocket lined with conserved hydrophobic residues to accommodate the pyroglutamyl residue. Aside from the S1 pocket, there is no clearly defined mainchain substrate-binding region, consistent with the lack of substrate specificity. Although the overall structure of PGP-I resembles some other alpha/beta twisted open-sheet structures, such as purine nucleoside phosphorylase and cutinase, there are important differences in the location and organization of the active-site residues. Thus, PGP-I belongs to a new family of cysteine proteases.