Jiang Hua-liangDrug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai ChinaPhone : Fax : Send E-Mail to Jiang Hua-liang
Title: Computationally Elucidating the Binding Kinetics for Different AChE Inhibitors to Access the Rationale for Improving the Drug Efficacy Bai F, Jiang H Ref: J Phys Chem B, 126:7797, 2022 : PubMed
Traditional drug discovery is based on a binding affinity (thermodynamics)-driven paradigm. Numerous examples, however, demonstrated that drug efficacy does not always depend only on binding affinity but positively correlates with binding kinetics, that is, the dissociation rate constant (k(off)). Binding free energy landscape (BFEL) constructor is a computational binding kinetics prediction method, previously developed by us, that estimates the binding kinetics for ligand-protein based on their constructed binding free energy landscape, but it also reveals the detailed molecular mechanism of the binding event, hence, providing the position of transition states at the molecular level to modify/improve the binding kinetics. Acetylcholinesterase (AChE) is a well-known Alzheimer's disease (AD) target for which there is still not an ideal drug on the market. Therefore, to improve the drug design strategy for AD, the binding kinetics and binding molecular mechanisms of the four inhibitors of AChE, that is, E2020 (Aricept), HupA, Rivastigmine, and Galantamine, were studied. Also, the differentiation of the binding kinetics between mAChE and TcAChE was studied to evaluate the sensitiveness of BFEL constructor. The flexibility of molecules has a noticeable effect on the nature of BFEL. To the same target, flexible molecules (i.e., E2020 and Rivastigmine) which contain more rotatable bonds tend to have more complicated BFELs reflecting more complicated molecular action mechanisms than the rigid ones (i.e., HupA and Galantamine), which therefore could be more challenging to be optimized. The binding kinetics is highly dependent on the structure of the molecules, such as the length and the functional groups. Therefore, E2020 presents better binding kinetic and thermodynamic properties with either TcAChE or mAChE. Therefore, it is the most promising lead drug for binding kinetics-based drug design. In addition, the binding kinetics of a drug may present different values in the proteins of different organisms because the residue compositions of the binding gorges of the targets are variant, that is, E2020 shows lower binding affinity and association energy barrier in binding with mAChE than TcAChE. However, HupA presents a better binding property with TcAChE than mAChE.
        
Title: Identification of regulatory variants of carboxylesterase 1 (CES1): A proof-of-concept study for the application of the Allele-Specific Protein Expression (ASPE) assay in identifying cis-acting regulatory genetic polymorphisms Her L, Shi J, Wang X, He B, Smith L, Jiang H, Zhu HJ Ref: Proteomics, :e2200176, 2022 : PubMed
It is challenging to study regulatory genetic variants as gene expression is affected by both genetic polymorphisms and non-genetic regulators. The mRNA allele-specific expression (ASE) assay has been increasingly used for the study of cis-acting regulatory variants because cis-acting variants affect gene expression in an allele-specific manner. However, poor correlations between mRNA and protein expressions were observed for many genes, highlighting the importance of studying gene expression regulation at the protein level. In the present study, we conducted a proof-of-concept study to utilize a recently developed allele-specific protein expression (ASPE) assay to identify the cis-acting regulatory variants of CES1 using a large set of human liver samples. The CES1 gene encodes for carboxylesterase 1 (CES1), the most abundant hepatic hydrolase in humans. Two cis-acting regulatory variants were found to be significantly associated with CES1 ASPE, CES1 protein expression, and its catalytic activity on enalapril hydrolysis in human livers. Compared to conventional gene expression-based approaches, ASPE demonstrated an improved statistical power to detect regulatory variants with small effect sizes since allelic protein expression ratios are less prone to the influence of non-genetic regulators (e.g., diseases and inducers). This study suggests that the ASPE approach is a powerful tool for identifying cis-regulatory variants. This article is protected by copyright. All rights reserved.
        
Title: Detoxification mechanism of vinegar-processed Kansui revealed by systematic phytochemical analysis using UPLC-DAD-MS/MS, UPLC-HR-MS and in silico drug target identification Liu L, Li J, Lv J, Jiang H, Chen FE Ref: Rapid Commun Mass Spectrom, :e9332, 2022 : PubMed
RATIONALE: The dried roots of Euphorbia kansui L., known as Kansui, have been used to treat ascites and edema in Traditional Chinese Medicine. However, the toxicity of this herb had seriously restricted its clinical application. A unique vinegar-processing method has been used to reduce its toxicity since ancient China. However, the detoxification mechanism underlying such vinegar-processing has not been fully revealed, to find the answer, the processed-induced components change should be carefully investigated. METHODS: Here we performed systematic analysis of chemical components in raw and vinegar-processed Kansui by UPLC-DAD-MS/MS and UPLC-HR-MS, 31 chemical components in raw and vinegar processed Kansui were found, and the chemical structure of 28 components among them was proposed, and the processed-induced components change was then investigated. RESULTS: A comprehensive conclusion about the processed-induced chemical change was drew. It was found that jatrophane-type diterpenoids decreased markedly after the vinegar-processing, while ingenane-type diterpenoids retained in the vinegar-processing. In silico drug target identification gave hints that jatrophane-type diterpenoids, which decreased markedly during the vinegar-processing, maybe has more intense toxicity involved in cholinesterase and MAPKs, while ingenane-type diterpenoids, which retained in the vinegar-processing, maybe has more intense therapeutic effect involved in carbonic anhydrase. CONCLUSIONS: The possible detoxification mechanism of vinegar-processed Kansui was present. The research has significance on the therapeutic/toxic chemical basis of Kansui, besides, it has significance on drug discovery from terpenoids within the herb.
        
Title: Genome-wide identification, classification, and expression profiling of serine esterases and other esterase-related proteins in the tobacco hornworm, Manduca sexta Miao Z, Xiong C, Cao X, Shan T, Jin Q, Jiang H Ref: Insect Sci, :, 2022 : PubMed
Serine esterases (SEs) are hydrolases that catalyze the conversion of carboxylic esters into acids and alcohols. Lipases and carboxylesterases constitute two major groups of SEs. Although over a hundred of insect genomes are known, systematic identification and classification of SEs are rarely performed, likely due to large size and complex composition of the gene family in each species. Considering their key roles in lipid metabolism and other physiological processes, we have categorized 144 M. sexta SEs and SE homologs (SEHs), 114 of which contain a motif of GXSXG. Multiple sequence alignment and phylogenetic tree analysis have revealed 39 neutral lipases (NLs), 3 neutral lipase homologs (NLHs), 11 acidic lipases (ALs), 3 acidic lipase homologs (ALHs), a lipase-3, a triglyceride lipase, a monoglyceride lipase, a hormone-sensitive lipase, and a GDSL lipase. Eighty-three carboxylesterase genes encode 29 alpha-esterases (AEs), 12 AEHs (e.g., SEH4-1-3), 20 feruloyl esterases (FEs), 2 FEHs, 2 beta-esterases (BEs), 2 integument esterases (IEs), 1 IEH, 4 juvenile hormone esterases, 2 acetylcholinesterases, gliotactin, 6 neuroligins, neurotactin, and an uncharacteristic esterase homolog. In addition to these GXSXG proteins, we have identified 26 phospholipases and 13 thioesterases. Expression profiling of these genes in specific tissues and stages has provided insights into their functions including digestion, detoxification, hormone processing, neurotransmission, reproduction, and developmental regulation. In summary, we have established a framework of information on SEs and related proteins in M. sexta to stimulate their research in the model species and comparative investigations in agricultural pests or disease vectors. Genome-wide identification of 110 serine esterases, 34 serine esterase homologs, 26 phospholipases, and 13 thioesterases Sequence-based classification and expression profiling of the genes in 71 RNA-seq datasets Predicted roles in food digestion, lipid mobilization, pesticide resistance, hormone signaling, and neurotransmission This article is protected by copyright. All rights reserved.
GPIHBP1, an endothelial cell (EC) protein, captures lipoprotein lipase (LPL) within the interstitial spaces (where it is secreted by myocytes and adipocytes) and transports it across ECs to its site of action in the capillary lumen. GPIHBP1's 3-fingered LU domain is required for LPL binding, but the function of its acidic domain (AD) has remained unclear. We created mutant mice lacking the AD and found severe hypertriglyceridemia. As expected, the mutant GPIHBP1 retained the capacity to bind LPL. Unexpectedly, however, most of the GPIHBP1 and LPL in the mutant mice was located on the abluminal surface of ECs (explaining the hypertriglyceridemia). The GPIHBP1-bound LPL was trapped on the abluminal surface of ECs by electrostatic interactions between the large basic patch on the surface of LPL and negatively charged heparan sulfate proteoglycans (HSPGs) on the surface of ECs. GPIHBP1 trafficking across ECs in the mutant mice was normalized by disrupting LPL-HSPG electrostatic interactions with either heparin or an AD peptide. Thus, GPIHBP1's AD plays a crucial function in plasma triglyceride metabolism; it sheathes LPL's basic patch on the abluminal surface of ECs, thereby preventing LPL-HSPG interactions and freeing GPIHBP1-LPL complexes to move across ECs to the capillary lumen.
Autism spectrum disorder (ASD), a group of neurodevelopmental disorder diseases, is characterized by social deficits, communication difficulties, and repetitive behaviors. Sterile alpha and TIR motif-containing 1 protein (SARM1) is known as an autism-associated protein and is enriched in brain tissue. Moreover, SARM1 knockdown mice exhibit autism-like behaviors. However, its specific mechanism in ASD pathogenesis remains unclear. Here we generated parvalbumin-positive interneurons (PVI)-specific conditional SARM1 knockout (SARM1(PV)-CKO) mice. SARM1(PV)-CKO male mice showed autism-like behaviors, such as mild social interaction deficits and repetitive behaviors. Moreover, we found that the expression level of parvalbumin was reduced in SARM1(PV)-CKO male mice, together with upregulated apoptosis-related proteins and more cleaved-caspase-3-positive PVIs, suggesting that knocking out SARM1 may cause a reduction in the number of PVIs due to apoptosis. Furthermore, the expression of c-fos was shown to increase in SARM1(PV)-CKO male mice, in combination with upregulation of excitatory postsynaptic proteins such as PSD-95 or neuroligin-1, indicating enhanced excitatory synaptic input in mutant mice. This notion was further supported by the partial rescue of autism-like behavior deficits by the administration of GABA receptor agonists in SARM1(PV)-CKO male mice. In conclusion, our findings suggest that SARM1 deficiency in PVIs may be involved in the pathogenesis of ASD.
Glioblastoma multiforme (GBM) is the intracranial malignancy with the highest rates of morbidity and mortality. Chemotherapy is often ineffective against GBM due to the presence of the blood-brain barrier (BBB); however, the application of nanotechnology is expected to overcome this limitation. Poly(lactic-co-glycolic acid) (PLGA) is a degradable and nontoxic functional polymer with good biocompatibility that is widely used in the pharmaceutical industry. Previous studies have shown that the ability of PLGA nanoparticles (NPs) to penetrate the BBB is largely determined by their size; however, determination of the optimal PLGA NP size requires further research. Here, we report a tandutinib-based prodrug (proTan), which responds to the GBM microenvironment, that was combined with NPs to overcome the BBB. AMD3100-PLGA NPs loaded with proTan inhibited tumor growth and effectively prolonged the survival of tumor-bearing mice.
GPIHBP1, a protein of capillary endothelial cells (ECs), is a crucial partner for lipoprotein lipase (LPL) in the lipolytic processing of triglyceride-rich lipoproteins. GPIHBP1, which contains a three-fingered cysteine-rich LU (Ly6/uPAR) domain and an intrinsically disordered acidic domain (AD), captures LPL from within the interstitial spaces (where it is secreted by parenchymal cells) and shuttles it across ECs to the capillary lumen. Without GPIHBP1, LPL remains stranded within the interstitial spaces, causing severe hypertriglyceridemia (chylomicronemia). Biophysical studies revealed that GPIHBP1 stabilizes LPL structure and preserves LPL activity. That discovery was the key to crystallizing the GPIHBP1-LPL complex. The crystal structure revealed that GPIHBP1's LU domain binds, largely by hydrophobic contacts, to LPL's C-terminal lipid-binding domain and that the AD is positioned to project across and interact, by electrostatic forces, with a large basic patch spanning LPL's lipid-binding and catalytic domains. We uncovered three functions for GPIHBP1's AD. First, it accelerates the kinetics of LPL binding. Second, it preserves LPL activity by inhibiting unfolding of LPL's catalytic domain. Third, by sheathing LPL's basic patch, the AD makes it possible for LPL to move across ECs to the capillary lumen. Without the AD, GPIHBP1-bound LPL is trapped by persistent interactions between LPL and negatively charged heparan sulfate proteoglycans (HSPGs) on the abluminal surface of ECs. The AD interrupts the HSPG interactions, freeing LPL-GPIHBP1 complexes to move across ECs to the capillary lumen. GPIHBP1 is medically important; GPIHBP1 mutations cause lifelong chylomicronemia, and GPIHBP1 autoantibodies cause some acquired cases of chylomicronemia.
        
Title: Site-selective covalently immobilized alpha 1A adrenergic receptor for thermodynamic and extra-thermodynamic study of four ligands binding to the receptor by chromatographic methods Yuan X, Shayiranbieke A, Xu R, Jiang H, Yang Y, Zhang Y, Yin G, Zhao X Ref: Journal of Chromatography A, 1665:462827, 2022 : PubMed
Immobilized G protein-coupled receptor is a versatile tool to study ligand-receptor interactions. In this work, we synthesized the immobilized alpha 1A adrenergic receptor (alpha(1A)-AR), a GPCR subtype mediating smooth muscle contraction, through a site-selective covalent method that relies on the reaction between haloalkane dehalogenase tagged alpha(1A)-AR and macroporous silica gel coated with 6-chlorohexanoic acid. To investigate thermodynamic and extra-thermodynamic parameters for ligand binding, we utilized the covalently immobilized receptor as stationary phase to perform frontal analysis and injection-amount dependent analysis as well as compared with the random immobilization method. Terazosin gave the association constant of 1.48 x 10(5) M(-1) to alpha(1A)-AR, indicating that the oriented immobilization of alpha(1A)-AR enhances the ligand-binding activity by one order of magnitude in comparison with the random immobilization method (7.9 x 10(4) M(-1)). The binding of phentolamine and tamsulosin to the receptor was accompanied by a large absolute heat capacity (deltaC(p)) of 1.28 +/- 0.23 kJ mol(-1), demonstrating that the binding enthalpy and entropy appear to compensate for one another. These results indicated that the covalent immobilization of the receptor onto solid support has a profound impact on the ligand-binding activity of the receptor and the determination of ligand-receptor binding parameters. The receptor immobilized through the site-selective method will act as a benchmark for chromatographic determination of binding parameters in ligand-receptor interactions and can be used as an effective approach for rapid analysis of drug-protein interactions with high accuracy.
        
Title: Reduced serum cholinesterase is an independent risk factor for all-cause mortality in the pediatric intensive care unit Yue C, Zhang C, Ying C, Jiang H Ref: Front Nutr, 9:809449, 2022 : PubMed
OBJECTIVE: Our aim was to assess the relationship between serum cholinesterase levels at intensive care unit admission and all-cause mortality in the pediatric intensive care unit. METHODS: We used the pediatric intensive care unit database (a large pediatric intensive care database in China from 2010 to 2018) to conduct a retrospective analysis to evaluate the serum cholinesterase levels at intensive care unit admission of 11,751 critically ill children enrolled to the intensive care unit. We analyzed the association between serum cholinesterase and all-cause mortality. Adjusted smoothing spline plots, subgroup analysis and segmented multivariate logistic regression analysis were conducted to estimate the relative risk between proportional risk between serum cholinesterase and death. RESULTS: Of the 11,751 children, 703 (5.98%) died in hospital. After adjusting for confounders, there was a negative association between serum cholinesterase and the risk of death in pediatric intensive care unit. For every 1,000 U/L increase in serum cholinesterase, the risk of death was reduced by 16% (adjusted OR = 0.84, 95% CI: 0.79, 0.89). The results of sensitivity analysis showed that in different stratified analyses (age, intensive care unit category, albumin, alanine aminotransferase, creatinine, neutrophils), the effect of serum cholinesterase on all-cause mortality remained stable. CONCLUSION: After adjusting for inflammation, nutrition, and liver function factors, cholinesterase reduction is still an independent risk factor for pediatric intensive care unit all-cause mortality.
        
Title: Growth hormone stimulates lipolysis in mice but not in adipose tissue or adipocyte culture Zhao L, Jiang H Ref: Front Endocrinol (Lausanne), 13:1028191, 2022 : PubMed
The inhibitory effect of growth hormone (GH) on adipose tissue growth and the stimulatory effect of GH on lipolysis are well known, but the mechanisms underlying these effects are not completely understood. In this study, we revisited the effects of GH on adipose tissue growth and lipolysis in the lit/lit mouse model. The lit/lit mice are GH deficient because of a mutation in the GH releasing hormone receptor gene. We found that the lit/lit mice had more subcutaneous fat and larger adipocytes than their heterozygous lit/+ littermates and that these differences were partially reversed by 4-week GH injection. We also found that GH injection to the lit/lit mice caused the mature adipose tissue and adipocytes to reduce in size. These results demonstrate that GH inhibits adipose tissue growth at least in part by stimulating lipolysis. To determine the mechanism by which GH stimulates lipolysis, we cultured adipose tissue explants and adipocytes derived from lit/lit mice with GH and/or isoproterenol, an agonist of the beta-adrenergic receptors. These experiments showed that whereas isoproterenol, expectedly, stimulated potent lipolysis, GH, surprisingly, had no effect on basal lipolysis or isoproterenol-induced lipolysis in adipose tissue explants or adipocytes. We also found that both isoproterenol-induced lipolysis and phosphorylation of hormone-sensitive lipase were not different between lit/lit and lit/+ mice. Taken together, these results support the conclusion that GH has lipolytic effect in mice but argue against the notion that GH stimulates lipolysis by directly acting on adipocytes or by enhancing beta-adrenergic receptors-mediated lipolysis.
        
Title: Identification of a GDSL lipase from Streptomyces bacillaris and its application in the preparation of free astaxanthin Gao K, Wang X, Jiang H, Sun J, Mao X Ref: J Biotechnol, 325:280, 2021 : PubMed
Astaxanthin shows multiple biological activities, but it is usually linked to different fatty acids and exists in the form of esters. The complexity of astaxanthin esters limits their application in the preparation of sophisticated drugs. Herein, a novel lipase from Streptomyces bacillaris that could hydrolyze astaxanthin esters, named OUC-Sb-lip12, was expressed in Bacillus subtilis. The active site of OUC-Sb-lip12 is probably composed of a dyad of Ser48 and His254, instead of a typical catalytic triad. The lipase was identified to be a GDSL hydrolase, and it showed highest activity at 45 degreesC and pH 9.0 (glycine-NaOH buffer). OUC-Sb-lip12 showed a good stability at its optimum temperature or a higher temperature, retaining 88.4% and 80.6% of its activity after incubating for 36 h at 45 degreesC and 55 degreesC, respectively. OUC-Sb-lip12 could effectively hydrolyze astaxanthin esters in Haematococcus pluvialis oil, generating free astaxanthin. Under the optimum conditions, 96.29% astaxanthin esters were hydrolyzed in 12 h. In addition, B.subtilis is a GRAS model strain and it could efficiently secrete lipase in 9 h, making the lipase potential for scale production of free astaxanthin, which could be further used in the preparation of specific astaxanthin esters with specific functions.
        
Title: Design, synthesis, and cholinesterase inhibition assay of liquiritigenin derivatives as anti-Alzheimer's activity Guan L, Peng D, Zhang L, Jia J, Jiang H Ref: Bioorganic & Medicinal Chemistry Lett, :128306, 2021 : PubMed
The marine environment is a rich resource for discovering functional materials, and seaweed is recognized for its potential use in biology and medicine. Liquiritigenin has been isolated and identified from Sargassum pallidum. To find new anti-Alzheimer's activity, we designed and synthesized thirty-two 7-prenyloxy-2,3-dihydroflavanone derivatives (3a-3p) and 5-hydroxy-7-prenyloxy-2,3-dihydro- flavanone derivatives (4a-4p) as cholinesterases inhibitors based on liquiritigenin as the lead compound. Inhibition screening against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) indicated that all synthesized compounds possessed potent AChE inhibitory activity and moderated to weak BuChE inhibitory activity in vitro. Kinetic studies demonstrated that compound 4o inhibited AChE via a dual binding site ability. In addition, all compounds displayed the radical scavenging effects. Finally, the molecular docking simulation of 4o in AChE active site displayed good agreement with the obtained the pharmacological results.
        
Title: Case Study Using Recommended Reference Genes Actin and 18S for Reverse-Transcription Quantitative Real-Time PCR Analysis in Myzus persicae Rahman S, Zhao Z, Umair Sial M, Zhang Y, Jiang H Ref: PLoS ONE, 16:e0258201, 2021 : PubMed
Myzus persicae is a globally important pest with the ability to adjust to a wide range of environmental situations, and many molecular technologies have been developed and applied to understand the biology and/or control this pest insect directly. Reverse-transcription quantitative real-time PCR (RT-qPCR) is a primary molecular technology that is used to quantify gene expression. Choosing a stable reference gene is significantly important for precisely clarifying the expression level of the target gene. Actin and 18S have been recommended as stable compounds for real-time RT-qPCR in M. persicae under the tested biotic and abiotic conditions. In this study, we checked the stability of Actin and 18S by analyzing the relative expression levels of the cytochrome 450 monooxygenase family member genes CYP6CY3 and CYP6-1, carboxylesterase gene E4 and vacuolar protein sorting gene VPS11 via RT-qPCR under various conditions. The expression levels of these four target genes were normalized using both Actin and 18S individually and the combination of these two genes. Our results confirmed that Actin and 18S can be used as reference genes to normalize the expression of target genes under insecticide treatment and starvation in M. persicae. However, at the developmental stages of M. persicae, the expression of the four tested target genes was normalized stably by Actin but not 18S, with the latter presenting a problematic change with the developmental stages. Thus, the stability of reference genes in response to diverse biotic and abiotic factors should be evaluated before each RT-qPCR experiment.
        
Title: Ensemble machine learning to evaluate the in vivo acute oral toxicity and in vitro human acetylcholinesterase inhibitory activity of organophosphates Wang L, Ding J, Shi P, Fu L, Pan L, Tian J, Cao D, Jiang H, Ding X Ref: Archives of Toxicology, :, 2021 : PubMed
Organophosphates (OPs) are hazardous chemicals widely used in industry and agriculture. Distribution of their residues in nature causes serious risks to humans, animals, and plants. To reduce hazards from OPs, quantitative structure-activity relationship (QSAR) models for predicting their acute oral toxicity in rats and mice and inhibition constants concerning human acetylcholinesterase were developed according to the bioactivity data of 456 unique OPs. Based on robust, two-dimensional molecular descriptors and quantum chemical descriptors, which accurately reflect OP electronic structures and reactivities, the influences of eight machine-learning algorithms on the prediction performance of the QSAR models were explored, and consensus QSAR models were constructed. Several strict model validation indices and the results of applicability domain evaluations show that the established consensus QSAR models exhibit good robustness, practical prediction abilities, and wide application scopes. Poor correlation was observed between acute oral toxicity at the mammalian level and the inhibition constants at the molecular level, indicating that the acute toxicity of OPs cannot be evaluated only by the experimental data of enzyme inhibitory activity, their toxicokinetic characteristics must also be considered. The constructed QSAR models described herein provide rapid, theoretical assessment of the bioactivity of unstudied or unknown OPs, as well as guidance for making decisions regarding their regulation.
        
Title: Discovery of novel reversible monoacylglycerol lipase inhibitors via docking-based virtual screening Xiong F, Ding X, Zhang H, Luo X, Chen K, Jiang H, Luo C, Xu H Ref: Bioorganic & Medicinal Chemistry Lett, :127986, 2021 : PubMed
Monoacylglycerol lipase (MAGL) is the major enzyme that catalyzes the hydrolysis of monoacylglycerols (MAGs). MAGL is responsible for degrading 2-arachidonoylglycerol (2-AG) to arachidonic acid (AA) and glycerol in the brain and specific tissues. The inhibition of MAGL could attenuate the inflammatory response. Here, we report a series of reversible non-covalent MAGL inhibitors via virtual screening combined with biochemical analysis. The hit, DC630-8 showed low-micromolar activity against MAGL in vitro, and exhibited significant anti-inflammatory effects.
The acetylcholinesterase (AChE) inhibitors remain key therapeutic drugs for the treatment of Alzheimer's disease (AD). However, the low-safety window limits their maximum therapeutic benefits. Here, a novel kinetics-driven drug design strategy was employed to discover new-generation AChE inhibitors that possess a longer drug-target residence time and exhibit a larger safety window. After detailed investigations, compound 12 was identified as a highly potent, highly selective, orally bioavailable, and brain preferentially distributed AChE inhibitor. Moreover, it significantly ameliorated cognitive impairments in different mouse models with a lower effective dose than donepezil. The X-ray structure of the cocrystal complex provided a precise binding mode between 12 and AChE. Besides, the data from the phase I trials demonstrated that 12 had good safety, tolerance, and pharmacokinetic profiles at all preset doses in healthy volunteers, providing a solid basis for its further investigation in phase II trials for the treatment of AD.
        
Title: Neuregulin-1beta Protects the Rat Diaphragm during Sepsis against Oxidative Stress and Inflammation by Activating the PI3K/Akt Pathway Liu H, Weng XJ, Yao JY, Zheng J, Lv X, Zhou XH, Jiang H, Li ST Ref: Oxid Med Cell Longev, 2020:1720961, 2020 : PubMed
Sepsis-induced diaphragm dysfunction (SIDD) which is mainly characterized by decrease in diaphragmatic contractility has been identified to cause great harms to patients. Therefore, there is an important and pressing need to find effective treatments for improving SIDD. In addition, acetylcholinesterase (AChE) activity is a vital property of the diaphragm, so we evaluated both diaphragmatic contractility and AChE activity. Though neuregulin-1beta (NRG-1beta) is known to exert organ-protective effects in some inflammatory diseases, little is known about the potential of NRG-1beta therapy in the diaphragm during sepsis. Our study was aimed at exploring the effects of NRG-1beta application on diaphragmatic contractility and AChE activity during sepsis. Proinflammatory cytokines, muscle injury biomarkers in serum, contractile force, AChE activity, proinflammatory cytokines, oxidative parameters, histological condition, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining, and expression of phosphoinositide 3-kinase (PI3K)/protein kinase B (PKB/Akt) signaling proteins in the diaphragm were measured and compared between nonseptic and septic groups with or without NRG-1beta treatment. In vitro, the effects of NRG-1beta on reactive oxygen species (ROS) production in the lipopolysaccharide- (LPS-) stimulated L6 rat muscle skeletal cells with or without the Akt inhibitor MK-2206 were detected. NRG-1beta inhibited proinflammatory cytokine release and muscle injury biomarkers soaring in serum and improved the sepsis-induced diaphragm dysfunction and AChE activity decrease significantly during sepsis. Meanwhile, the inflammatory response, oxidative stress, pathological impairment, and cell apoptosis in the diaphragm were mitigated by NRG-1beta. And NRG-1beta activated the PI3K/Akt signaling in the diaphragm of septic rats. Elevated ROS production in the LPS-stimulated L6 rat skeletal muscle cells was reduced after treatment with NRG-1beta, while MK-2206 blocked these effects of NRG-1beta. In conclusion, our findings underlined that NRG-1beta could reduce circulating levels of proinflammatory cytokines in rats with sepsis, adjust diaphragmatic proinflammatory cytokine level, mitigate diaphragmatic oxidative injury, and lessen diaphragm cell apoptosis, thereby improving diaphragmatic function, and play a role in diaphragmatic protection by activating PI3K/Akt signaling.
        
Title: Embryonic development and oxidative stress effects in the larvae and adult fish livers of zebrafish (Danio rerio) exposed to the strobilurin fungicides, kresoxim-methyl and pyraclostrobin Mao L, Jia W, Zhang L, Zhang Y, Zhu L, Sial MU, Jiang H Ref: Sci Total Environ, 729:139031, 2020 : PubMed
Two important strobilurin fungicides, kresoxim-methyl and pyraclostrobin, are widely used globally. Their effects on embryonic development and oxidative stress effects in the larvae and adult fish livers of zebrafish (Danio rerio) were assessed in our study. The hatching, mortality, and teratogenic rates were determined when the eggs of fish were exposed to kresoxim-methyl and pyraclostrobin for 24-144 h postfertilization (hpf). For further study, the effects of kresoxim-methyl and pyraclostrobin on antioxidant enzymes [catalase (CAT), superoxide dismutase (SOD) and peroxidase (POD)], detoxification enzymes [carboxylesterase (CarE) and glutathione S-transferase (GST)] and the malondialdehyde (MDA) content of larval zebrafish (96 h) and male or female adult zebrafish livers (up to 28 d) were evaluated for potential toxicity mechanisms. The study of embryonic development revealed that both kresoxim-methyl and pyraclostrobin caused developmental toxicity (hatching inhibition, mortality, and teratogenic rates) increase with significant concentration- and time-dependent responses, and the 144-h median lethal values (LC50) of kresoxim-methyl and pyraclostrobin were 195.0 and 81.3 mug L(-1), respectively. In the larval zebrafish study, both kresoxim-methyl and pyraclostrobin at the highest concentrations (100 mug L(-1) and 15 mug L(-1), respectively) significantly increased the CAT, POD and CarE activities and MDA content compared with those of the control group (P < 0.05). We further found that oxidative stress effects in adult zebrafish livers caused by long-term kresoxim-methyl and pyraclostrobin exposure differed with time and sex. Regarding the residues in natural waters, the potential adverse effects of kresoxim-methyl and pyraclostrobin would be relatively low for adult zebrafish but must not be overlooked for zebrafish embryos/larvae (hatching impairment). Our results from the detoxification enzyme study also initially indicated that adult zebrafish had a greater detoxification ability than larvae and that males had a greater detoxification ability than females.
        
Title: Digestion-related proteins in the tobacco hornworm, Manduca sexta Miao Z, Cao X, Jiang H Ref: Insect Biochemistry & Molecular Biology, :103457, 2020 : PubMed
Food digestion is vital for the survival and prosperity of insects. Research on insect digestive enzymes yields knowledge of their structure and function, and potential targets of antifeedants to control agricultural pests. While such enzymes from pest species are more relevant for inhibitor screening, a systematic analysis of their counterparts in a model insect has broader impacts. In this context, we identified a set of 122 digestive enzyme genes from the genome of Manduca sexta, a lepidopteran model related to some major agricultural pests. These genes encode hydrolases of proteins (85), lipids (20), carbohydrates (16), and nucleic acids (1). Gut serine proteases (62) and their noncatalytic homologs (11) in the S1A subfamily are encoded by abundant transcripts whose levels correlate well with larval feeding stages. Aminopeptidases (10), carboxypeptidases (10), and other proteases (3) also participate in dietary protein digestion. A large group of 11 lipases as well as 9 esterases are probably responsible for digesting lipids in diets. The repertoire of carbohydrate hydrolases (16) is relatively small, including two amylases, three maltases, two sucrases, two alpha-glucosidases, and others. Lysozymes, peptidoglycan amidases, and beta-1,3-glucanase may hydrolyze peptidoglycans and glucans to harvest energy and defend the host from microbes on plant leaves. One alkaline nuclease is associated with larval feeding, which is likely responsible for hydrolyzing denatured DNA and RNA undergoing autolysis at a high pH of midgut. Proteomic analysis of the ectoperitrophic fluid from feeding larvae validated at least 131 or 89% of the digestive enzymes and their homologs. In summary, this study provides for the first time a holistic view of the digestion-related proteins in a lepidopteran model insect and clues for comparative research in lepidopteran pests and beyond.
        
Title: Label-free absolute protein quantification with data-independent acquisition He B, Shi J, Wang X, Jiang H, Zhu HJ Ref: J Proteomics, 200:51, 2019 : PubMed
Despite data-independent acquisition (DIA) has been increasingly used for relative protein quantification, DIA-based label-free absolute quantification method has not been fully established. Here we present a novel DIA method using the TPA algorithm (DIA-TPA) for the absolute quantification of protein expressions in human liver microsomal and S9 samples. To validate this method, both data-dependent acquisition (DDA) and DIA experiments were conducted on 36 individual human liver microsome and S9 samples. The MS2-based DIA-TPA was able to quantify approximately twice as many proteins as the MS1-based DDA-TPA method, whereas protein concentrations determined by the two approaches were comparable. To evaluate the accuracy of the DIA-TPA method, we absolutely quantified carboxylesterase 1 concentrations in human liver S9 fractions using an established SILAC internal standard-based proteomic assay; the SILAC results were consistent with those obtained from DIA-TPA analysis. Finally, we employed a unique algorithm in DIA-TPA to distribute the MS signals from shared peptides to individual proteins or isoforms and successfully applied the method to the absolute quantification of several drug-metabolizing enzymes in human liver microsomes. In sum, the DIA-TPA method not only can absolutely quantify entire proteomes and specific proteins, but also has the capability quantifying proteins with shared peptides. SIGNIFICANCE: Data independent acquisition (DIA) has emerged as a powerful approach for relative protein quantification at the whole proteome level. However, DIA-based label-free absolute protein quantification (APQ) method has not been fully established. In the present study, we present a novel DIA-based label-free APQ approach, named DIA-TPA, with the capability absolutely quantifying proteins with shared peptides. The method was validated by comparing the quantification results of DIA-TPA with that obtained from stable isotope-labeled internal standard-based proteomic assays.
        
Title: Engineering Dynamic Surface Peptide Networks on ButyrylcholinesteraseG117H for Enhanced Organophosphosphorus Anticholinesterase Catalysis Hester KP, Bhattarai K, Jiang H, Agarwal PK, Pope C Ref: Chemical Research in Toxicology, 32:1801, 2019 : PubMed
The single residue mutation of butyrylcholinesterase (BChEG117H) hydrolyzes a number of organophosphosphorus (OP) anticholinesterases. Whereas other BChE active site/proximal mutations have been investigated, none are sufficiently active to be prophylactically useful. In a fundamentally different computer simulations driven strategy, we identified a surface peptide loop (residues 278-285) exhibiting dynamic motions during catalysis and modified it via residue insertions. We evaluated these loop mutants using computer simulations, substrate kinetics, resistance to inhibition, and enzyme reactivation assays using both the choline ester and OP substrates. A slight but significant increase in reactivation was noted with paraoxon with one of the mutants, and changes in KM and catalytic efficiency were noted in others. Simulations suggested weaker interactions between OP versus choline substrates and the active site of all engineered versions of the enzyme. The results indicate that an improvement of OP anticholinesterase hydrolysis through surface loop engineering may be a more effective strategy in an enzyme with higher intrinsic OP compound hydrolase activity.
BACKGROUND: Fatty Acid Synthase (FAS or FASN) is a vital enzyme which catalyzes the de novo synthesis of long chain fatty acids. A number of studies have recently been reported that FAS was combined targets for the discovery of anti-obesity and anti-cancer drugs. Great interest has been developed in finding novel FAS inhibitors, and result in more than 200 inhibitors being reported. METHODS: The reported research literature about the FAS inhibitors was collected and analyzedsised through major databases including Web of Science, and PubMed. Then the chemical stractures, FAS inhibitory activities, and Structure-Activity Relationships (SAR) were summarized focused on all these reported FAS inhibitors. RESULTS: The 248 FAS inhibitors, which were reported during the past 20 years, could be divided into thiolactone, butyrolactone and butyrolactam, polyphenols, alkaloids, terpenoids, and other structures, in view of their structure characteristics. And the SAR of high inhibitory structures of each type was proposed in this paper. CONCLUSION: A series of synthetic quinolinone derivatives show strongest inhibitory activity in the reported FAS inhibitors. Natural polyphenols, existing in food and herbs, show more adaptive in medicine exploration because of their safety and efficiency. Moreover, screening the FAS inhibitors from microorganism and marine natural products could be the hot research directions in the future.
Poor medication adherence is one of the leading causes of suboptimal glycaemic control in approximately half of the patients with type 2 diabetes mellitus (T2DM). Long-acting antidiabetic drugs are clinically needed for improving patients' compliance. Dipeptidyl peptidase-4 (DPP-4) inhibitors play an increasingly important role in the treatment of T2DM because of their favorable properties of weight neutrality and hypoglycemia avoidance. Herein, we report the successful discovery and scale-up synthesis of compound 5, a structurally novel, potent, and long-acting DPP-4 inhibitor for the once-weekly treatment of T2DM. Inhibitor 5 has fast-associating and slow-dissociating binding kinetics profiles as well as slow clearance rate and long terminal half-life pharmacokinetic properties. A single-dose oral administration of 5 (3 mg/kg) inhibited >80% of DPP-4 activity for more than 7 days in diabetic mice. The long-term antidiabetic efficacies of 5 (10 mg/kg, qw) were better than those of the once-weekly trelagliptin and omarigliptin, especially in decreasing the hemoglobin A1c level.
        
Title: Inhibitory Effect of Condensed Tannins from Banana Pulp on Cholesterol Esterase and Mechanisms of Interaction Li X, Jiang H, Pu Y, Cao J, Jiang W Ref: Journal of Agricultural and Food Chemistry, 67:14066, 2019 : PubMed
In the present study, the inhibitory effect of condensed tannins (CTs) on cholesterol esterase (CEase) was studied. The underlying mechanisms were evaluated by reaction kinetics, turbidity and particle size analyses, multispectroscopy methods, thermodynamics, and computer molecular simulations. CTs showed potent CEase inhibitory activity with an IC(50) value of 64.19 mug/mL, and the CEase activity decreased with increasing CT content in a mixed-competitive manner, which was verified by molecular docking simulations. Fluorescence and UV-vis measurements revealed that complexes were formed from CEase and CTs by noncovalent interaction. Isothermal titration calorimetry indicated that the interaction between CEase and CTs occurred through hydrogen bonding and hydrophobic interactions. Circular dichroism analysis suggested that CTs inhibited the activity of CEase by altering the secondary structure of CEase. The inhibition of CTs on CEase in the gastrointestinal tract might be one mechanism for its cholesterol-lowering effect.
        
Title: The larvicidal activity of natural inspired piperine-based dienehydrazides against Culex pipiens Tantawy AH, Farag SM, Hegazy L, Jiang H, Wang MQ Ref: Bioorg Chem, :103464, 2019 : PubMed
A series of piperine-based dienehydrazide derivatives were designed and synthesized to be used as insecticides against Culex pipiens. The chemical structure of compound 5n was confirmed by single-crystal x-ray diffraction. Their insecticidal activities of synthesized compounds were tested against third-instar larval of Cx. pipiens at concentrations ranging from 0.1 to 1.2 mg/mL. Among all derivatives, compounds 5a, 5b, 5f, 5g, 5m, 5n, 5o, 5p, and 5u displayed good activities. The final mortality rates at the concentration of 0.75 mg/mL after 48 h treatment, were found to be in the range from 80.00 to 83.33% and with LC50 values ranging from 0.221 to 0.094 mg/mL. These compounds demonstrated higher insecticidal activities than piperine and Deltamethrin (a commercial positive control). Molecular modelling reveals several molecular interactions between synthesized compounds and the substrate binding sits of acetylcholinesterase (AChE) that are predicted to be responsible for its binding and inhibition activity. .
        
Title: Bacillus subtilis Spore Surface Display of Haloalkane Dehalogenase DhaA Wang F, Song T, Jiang H, Pei C, Huang Q, Xi H Ref: Curr Microbiol, 76:1161, 2019 : PubMed
The haloalkane dehalogenase DhaA can degrade sulfur mustard (2,2'-dichlorethyl sulfide; also known by its military designation HD) in a rapid and environmentally safe manner. However, DhaA is sensitive to temperature and pH, which limits its applications in natural or harsh environments. Spore surface display technology using resistant spores as a carrier to ensure enzymatic activity can reduce production costs and extend the range of applications of DhaA. To this end, we cloned recombinant Bacillus subtilis spores pHY300PLK-cotg-dhaa-6his/DB104(FH01) for the delivery of DhaA from Rhodococcus rhodochrous NCIMB 13064. A dot blotting showed that the fusion protein CotG-linker-DhaA accounted for 0.41% +/- 0.03% (P < 0.01) of total spore coat proteins. Immunofluorescence analyses confirmed that DhaA was displayed on the spore surface. The hydrolyzing activity of DhaA displayed on spores towards the HD analog 2-chloroethyl ethylsulfide was 1.74 +/- 0.06 U/mL (P < 0.01), with a specific activity was 0.34 +/- 0.04 U/mg (P < 0.01). This is the first demonstration that DhaA displayed on the surface of B. subtilis spores retains enzymatic activity, which suggests that it can be used effectively in real-world applications including bioremediation of contaminated environments.
Lipoprotein lipase (LPL), identified in the 1950s, has been studied intensively by biochemists, physiologists, and clinical investigators. These efforts uncovered a central role for LPL in plasma triglyceride metabolism and identified LPL mutations as a cause of hypertriglyceridemia. By the 1990s, with an outline for plasma triglyceride metabolism established, interest in triglyceride metabolism waned. In recent years, however, interest in plasma triglyceride metabolism has awakened, in part because of the discovery of new molecules governing triglyceride metabolism. One such protein-and the focus of this review-is GPIHBP1, a protein of capillary endothelial cells. GPIHBP1 is LPL's essential partner: it binds LPL and transports it to the capillary lumen; it is essential for lipoprotein margination along capillaries, allowing lipolysis to proceed; and it preserves LPL's structure and activity. Recently, GPIHBP1 was the key to solving the structure of LPL. These developments have transformed the models for intravascular triglyceride metabolism.
        
Title: Effects of two strobilurins (azoxystrobin and picoxystrobin) on embryonic development and enzyme activities in juveniles and adult fish livers of zebrafish (Danio rerio) Jia W, Mao L, Zhang L, Zhang Y, Jiang H Ref: Chemosphere, 207:573, 2018 : PubMed
Azoxystrobin and picoxystrobin are two primary strobilurin fungicides used worldwide. This study was conducted to test their effects on embryonic development and the activity of several enzyme in the zebrafish (Danio rerio). After fish eggs were separately exposed to azoxystrobin and picoxystrobin from 24 to 144h post fertilization (hpf), the mortality, hatching, and teratogenetic rates were measured. Additionally, effects of azoxystrobin and picoxystrobin on activities of three important antioxidant enzymes [catalase (CAT), superoxide dismutase (SOD) and peroxidase (POD)] and two primary detoxification enzymes [carboxylesterase (CarE) and glutathione S-transferase (GST)] and malondialdehyde (MDA) content in zebrafish larvae (96h) and livers of adult zebrafish of both sexes were also assessed for potential toxicity mechanisms. Based on the embryonic development test results, the mortality, hatching, and teratogenetic rates of eggs treated with azoxystrobin and picoxystrobin all showed significant dose- and time-dependent effects, and the 144-h LC50 values of azoxystrobin and picoxystrobin were 1174.9 and 213.8mugL(-1), respectively. In the larval zebrafish (96h) test, activities of CAT, POD, CarE, and GST and MDA content in azoxystrobin and picoxystrobin-treated zebrafish larvae increased significantly with concentrations of the pesticides compared with those in the control. We further revealed that azoxystrobin and picoxystrobin exposure both caused significant oxidative stress in adult fish livers and the changes differed between the sexes. Our results indicated that picoxystrobin led to higher embryonic development toxicity and oxidative stress than azoxystrobin in zebrafish and the male zebrafish liver had stronger ability to detoxify than that of the females.
        
Title: Use of low-dose neostigmine intravenously in the treatment of thyroid storm-induced severe tachycardia in patient during huge pelvic mass resection: A case report and review of literature Zhang X, Jiang H, Li S, Luo A, Zhao Y Ref: Medicine (Baltimore), 97:e0300, 2018 : PubMed
RATIONALE: Thyroid storm is a rare and life-threatening metabolic crisis because of an emergent release of excess thyroid hormone. Sinus tachycardia induced by excess thyroid hormone may result in congestive heart failure due to decreased diastolic filling time. PATIENT CONCERNS: A controlled hyperthyroidism patient with severe sinus tachycardia. DIAGNOSES: A controlled hyperthyroidism patient was induced thyroid storm during huge pelvic mass resection. INTERVENTIONS: Application of low-dose neostigmine and beta-antagonist esmolol to control the heart rate (HR) avoided hemodynamic collapse. OUTCOMES: The patient improved dramatically following application of low-dose neostigmine instead of esmolol to control the HR avoided hemodynamic collapse. LESSONS: Our case suggests that neostigmine, an acetylcholinesterase inhibitor, may warrant further investigation in patients with thyroid storm-induced severe sinus tachycardia.
The N-myc downstream regulated gene (NDRG) family consists of 4 members, NDRG-1, -2, -3, -4. Physiologically, we found Ndrg3, a critical gene which led to homologous lethality in the early embryo development, regulated the male meiosis in mouse. The expression of Ndrg3 was enhanced specifically in germ cells, and reached its peak level in the pachytene stage spermatocyte. Haplo-insufficiency of Ndrg3 gene led to sub-infertility during the male early maturation. In the Ndrg3(+/-) germ cells, some meiosis events such as DSB repair and synaptonemal complex formation were impaired. Disturbances on meiotic prophase progression and spermatogenesis were observed. In mechanism, the attenuation of pERK1/2 signaling was detected in the heterozygous testis. With our primary spermatocyte culture system, we found that lactate promoted DSB repair via ERK1/2 signaling in the male mouse germ cells in vitro. Deficiency of Ndrg3 gene attenuated the activation of ERK which further led to the aberrancy of DSB repair in the male germ cells in mouse. Taken together, we reported that Ndrg3 gene modulated the lactate induced ERK pathway to facilitate DSB repair in male germ cells, which further regulated meiosis and subsequently fertility in male mouse.
Functions of biomolecules, in particular enzymes, are usually modulated by structural fluctuations. This is especially the case in a gated diffusion-controlled reaction catalyzed by an enzyme such as acetylcholinesterase. The catalytic triad of acetylcholinesterase is located at the bottom of a long and narrow gorge, but it catalyzes the extremely rapid hydrolysis of the neurotransmitter, acetylcholine, with a reaction rate close to the diffusion-controlled limit. Computational modeling and simulation have produced considerable advances in exploring the dynamical and conformational properties of biomolecules, not only aiding in interpreting the experimental data, but also providing insights into the internal motions of the biomolecule at the atomic level. Given the remarkably high catalytic efficiency and the importance of acetylcholinesterase in drug development, great efforts have been made to understand the dynamics associated with its functions by use of various computational methods. Here, we present a comprehensive overview of recent computational studies on acetylcholinesterase, expanding our views of the enzyme from a microstate of a single structure to conformational ensembles, strengthening our understanding of the integration of structure, dynamics and function associated with the enzyme, and promoting the structure-based and/or mechanism-based design of new inhibitors for it.
To test the hypothesis that VitC downregulates soluble epoxide hydrolase (sEH, responsible for converting EETs to DHETs) to stabilize tissue EETs, the heart, lung, liver, kidney, and mesenteric arteries isolated from normal rats were incubated with VitC (1000muM) for 72h, and tissue sEH expression, along with EET and DHET profiles were assessed. VitC caused significant reductions in sEH mRNA and protein content in the liver, heart and vessels, but had no effect on renal and pulmonary sEH expression, revealing a tissue-specific regulatory mechanism. The functional consequence of reduced sEH expression was validated by LC/MS/MS-based analysis, indicating that in VitC-treated tissues that displayed downregulation of sEH mRNA and protein expression, total DHETs were significantly lower, accompanied with a greater ratio of EETs/DHETs than those in VitC-untreated groups. Thus, VitC elicits a transcriptional downregulation of sEH in normal liver, heart, and vessels to reduce EET degradation and increase EET bioavailability.
OBJECTIVE: To gain mechanistic insights into the role of LIPA (lipase A), the gene encoding LAL (lysosomal acid lipase) protein, in human macrophages. APPROACH AND RESULTS: We used CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9) technology to knock out LIPA in human induced pluripotent stem cells and then differentiate to macrophage (human-induced pluripotent stem cells-derived macrophage [IPSDM]) to explore the human macrophage LIPA loss-of-function phenotypes. LIPA was abundantly expressed in monocyte-derived macrophages and was markedly induced on IPSDM differentiation to comparable levels as in human monocyte-derived macrophage. IPSDM with knockout of LIPA (LIPA(-/-)) had barely detectable LAL enzymatic activity. Control and LIPA(-/-) IPSDM were loaded with [(3)H]-cholesteryl oleate-labeled AcLDL (acetylated low-density lipoprotein) followed by efflux to apolipoprotein A-I. Efflux of liberated [(3)H]-cholesterol to apolipoprotein A-I was abolished in LIPA(-/-) IPSDM, indicating deficiency in LAL-mediated lysosomal cholesteryl ester hydrolysis. In cells loaded with [(3)H]-cholesterol-labeled AcLDL, [(3)H]-cholesterol efflux was, however, not different between control and LIPA(-/-) IPSDM. ABCA1 (ATP-binding cassette, subfamily A, member 1) expression was upregulated by AcLDL loading but to a similar extent between control and LIPA(-/-) IPSDM. In nonlipid loaded state, LIPA(-/-) IPSDM had high levels of cholesteryl ester mass compared with minute amounts in control IPSDM. Yet, with AcLDL loading, overall cholesteryl ester mass was increased to similar levels in both control and LIPA(-/-) IPSDM. LIPA(-/-) did not impact lysosomal apolipoprotein-B degradation or expression of IL1B, IL6, and CCL5. CONCLUSIONS: LIPA(-/-) IPSDM reveals macrophage-specific hallmarks of LIPA deficiency. CRISPR/Cas9 and IPSDM provide important tools to study human macrophage biology and more broadly for future studies of disease-associated LIPA genetic variation in human macrophages.
Starting from the lead isodaphnetin, a natural product inhibitor of DPP-4 discovered through a target fishing docking based approach, a series of novel 2-phenyl-3,4-dihydro-2H-benzo[f]chromen-3-amine derivatives as potent DPP-4 inhibitors are rationally designed utilizing highly efficient 3D molecular similarity based scaffold hopping as well as electrostatic complementary methods. Those ingenious drug design strategies bring us approximate 7400-fold boost in potency. Compounds 22a and 24a are the most potent ones (IC50 approximately 2.0 nM) with good pharmacokinetic profiles. Compound 22a demonstrated stable pharmacological effect. A 3 mg/kg oral dose provided >80% inhibition of DPP-4 activity within 24 h, which is comparable to the performance of the long-acting control omarigliptin. Moreover, the efficacy of 22a in improving the glucose tolerance is also comparable with omarigliptin. In this study, not only promising DPP-4 inhibitors as long acting antidiabetic that are clinically on demand are identified, but the target fish docking and medicinal chemistry strategies were successfully implemented.
        
Title: Novel ferulic amide derivatives with tertiary amine side chain as acetylcholinesterase and butyrylcholinesterase inhibitors: The influence of carbon spacer length, alkylamine and aromatic group Liu H, Liu L, Gao X, Liu Y, Xu W, He W, Jiang H, Tang J, Fan H, Xia X Ref: Eur Journal of Medicinal Chemistry, 126:810, 2016 : PubMed
Based on our recent investigations on chalcone derivatives as AChE inhibitors, a series of ferulic acid (FA) tertiary amine derivatives similar to chalcone compounds were designed and synthesized. The results of bioactivity evaluation revealed that most of new synthesized compounds had comparable or more potent AChE inhibitory activity than the control drug Rivastigmine. The alteration of carbon chain linking tertiary amine groups and ferulic acid scaffold markedly influenced the inhibition activity against AChE. Among them the inhibitory activity of compound 6d (IC50: 0.71 +/- 0.09 mumol/L) and 6e (IC50: 1.11 +/- 0.17 mumol/L) was equal to 15-fold and 9-fold than that of Rivastigmine against AChE (IC50: 10.54 +/- 0.86 mumol/L), respectively. Moreover, compound 6d shows the highest selectivity for AChE over butyrylcholinesterase(BuChE) (ratio: 18.3). The kinetic study suggested that compound 6d revealed a mixed-type inhibition against AChE. The result of molecular docking showed that compound 6d combines to AChE with three amino acid sites(Trp84, Tyr334 and Trp279), while combines to BuChE with two amino acid sites (Tyr67 and Gly66) in enzyme domains, respectively. Compound 6d might act as a potential agent for the treatment of Alzheimer's diseases (AD).
        
Title: Functions of Type II Thioesterases in Bacterial Polyketide Biosynthesis Luo HD, Jin MY, Wu H, Jiang H Ref: Protein Pept Lett, 23:1032, 2016 : PubMed
Many polyketides show biological activities and have thus been applied in clinics, as food additives, and in agriculture. Type II thioesterases (TEIIs) play an important role in polyketide biosynthesis. Most TEIIs belong to alpha/beta-hydrolase family and usually contain a catalytic triad Ser-His-Asp. In polyketide biosynthesis, TEIIs can play an editing role by removal of aberrant non-extendable acyl units in elongation steps, a starter unit selection role by removal of unfavored starter acyl units in initiation steps, and a releasing role by removal of final product in termination steps. Complementation of TEIIs has been observed and applied.
        
Title: EET-dependent potentiation of pulmonary arterial pressure: Sex different regulation of soluble epoxide hydrolase Kandhi S, Qin J, Froogh G, Jiang H, Luo M, Wolin MS, Huang A, Sun D Ref: American Journal of Physiology Lung Cell Mol Physiol, :ajplung 00208 2015, 2015 : PubMed
We tested the hypothesis that suppression of epoxyeicosatrienoic acid (EET) metabolism via genetic knockout of the gene for soluble epoxide hydrolase (sEH-KO), or female-specific downregulation of sEH expression, plays a role in the potentiation of pulmonary hypertension. We used male (M) and female (F) wild type (WT) and sEH-KO mice; the latter have high pulmonary EETs. Right ventricular systolic pressure (RVSP) and mean arterial blood pressure (MABP) in control, and in response to in vivo administration of U46619 (thromboxane analogue), 14,15-EET, and 14,15-EEZE (antagonist of EETs) were recorded. Basal RVSP was comparable among all groups of mice, whereas MABP was significantly lower in F-WT than M-WT mice, and further reduced predominantly in F-KO compared to M-KO mice. U46619 dose-dependently increased RVSP and MABP in all groups of mice. The increase in RVSP was significantly greater and coincided with smaller increases in MABP in M-KO and F-WT mice compared to M-WT mice. In F-KO mice, the elevation of RVSP by U46619 was even higher than M-KO and F-WT mice, associated with the least increase in MABP. 14,15-EEZE prevented the augmentation of U46619-induced elevation of RVSP in sEH-KO mice, whereas, 14,15-EET-induced pulmonary vasoconstriction was comparable in all groups of mice. sEH expression in the lungs was reduced, paralleled with higher levels of EETs in F-WT compared to M-WT mice. In summary, EETs initiate pulmonary vasoconstriction but act as vasodilators systemically. High pulmonary EETs, as a function of downregulation or deletion of sEH, potentiate U46619-induced increases in RVSP in a female-susceptible manner.
        
Title: Sexually dimorphic phenotype of arteriolar responsiveness to shear stress in soluble epoxide hydrolase-knockout mice Qin J, Kandhi S, Froogh G, Jiang H, Meng L, Sun D, Huang A Ref: American Journal of Physiology Heart Circ Physiol, :ajpheart 00568 2015, 2015 : PubMed
We hypothesized that potentiating the bioavailability of endothelial epoxyeicosatrienoic acids (EETs) via deletion of the gene for soluble epoxide hydrolase (sEH), or downregulation of sEH expression, enhances flow/shear stress-induced dilator responses (FID) of arterioles. Using male (M) and female (F) wild type (WT) and sEH-knockout (KO) mice, isolated gracilis muscle arterioles were cannulated and pressurized at 80 mmHg. Basal tone and increases in diameter of arterioles as a function of perfusate flow (5, 10, 15, 20 and 25 microl/min) were recorded. The magnitude of FID was significantly smaller, and associated with a greater arteriolar tone in M-WT than F-WT mice, revealing a sex-difference in FID. This sex-difference was abolished by deletion of the sEH gene, as evidenced by an enhanced FID in M-KO mice to a level comparable to those observed in F-KO and F-WT mice. These three groups of mice coincidentally exhibited an increased endothelial sensitivity to shear stress (smaller WSS50) and were hypotensive. Endothelial EETs participated in the mediation of enhanced FID in M-KO, F-KO and F-WT mice, without effects on FID of M-WT mice. Protein expression of sEH was downregulated by approximately 4-fold in vessels of F-WT compared to M-WT mice, paralleled with greater vascular EET levels that were statistically comparable to those observed in both male and female sEH-KO mice. In conclusion, sex-different regulation of sHE accounts for sex differences in flow mediated dilation of microvessels in gonadally intact mice.
        
Title: Engineering Pseudomonas putida KT2440 for simultaneous degradation of organophosphates and pyrethroids and its application in bioremediation of soil Zuo Z, Gong T, Che Y, Liu R, Xu P, Jiang H, Qiao C, Song C, Yang C Ref: Biodegradation, 26:223, 2015 : PubMed
Agricultural soils are usually co-contaminated with organophosphate (OP) and pyrethroid pesticides. To develop a stable and marker-free Pseudomonas putida for co-expression of two pesticide-degrading enzymes, we constructed a suicide plasmid with expression cassettes containing a constitutive promoter J23119, an OP-degrading gene (mpd), a pyrethroid-hydrolyzing carboxylesterase gene (pytH) that utilizes the upp gene as a counter-selectable marker for upp-deficient P. putida. By introduction of suicide plasmid and two-step homologous recombination, both mpd and pytH genes were integrated into the chromosome of a robust soil bacterium P. putida KT2440 and no selection marker was left on chromosome. Functional expression of mpd and pytH in P. putida KT2440 was demonstrated by Western blot analysis and enzyme activity assays. Degradation experiments with liquid cultures showed that the mixed pesticides including methyl parathion, fenitrothion, chlorpyrifos, permethrin, fenpropathrin, and cypermethrin (0.2 mM each) were degraded completely within 48 h. The inoculation of engineered strain (10(6) cells/g) to soils treated with the above mixed pesticides resulted in a higher degradation rate than in noninoculated soils. All six pesticides could be degraded completely within 15 days in fumigated and nonfumigated soils with inoculation. Theses results highlight the potential of the engineered strain to be used for in situ bioremediation of soils co-contaminated with OP and pyrethroid pesticides.
        
Title: The Report of Sustained Low-Efficiency Dialysis (SLED) Treatment in Fifteen Patients of Severe Snakebite Cheng J, Wang D, Hu S, Jiang H, Lu H, Lei Q, Liu J, Yuan F, Chen R Ref: Cell Biochem Biophys, 69:71, 2014 : PubMed
To investigate the therapeutic efficacy of sustained low-efficiency dialysis (SLED) in severe snakebite patients. Fifteen patients of severe snakebite was treated with SLED from July 2005 to August 2009 were included in the study. Central venous access was established in all patients. SLED was administered using Dialog(+) dialyzer (B. Braun, Germany). SLED sessions were 6-12 h in duration at a blood flow rate of 200 ml/min and a dialysate flow rate of 300 ml/min. Heparin or low molecular weight heparin was used as anticoagulant. Biochemical indicators, APACHE II scores before and after SLED, and clinical outcomes were evaluated. The levels of serum creatinine, glutamic-oxaloacetic transaminase, glutamic-pyruvic transaminase, creatine kinase isozyme MB, and creatine kinase were significantly lower than the level before SLED (P < 0.05); the level of cholinesterase was significantly higher after SLED (P < 0.01); the APACHE II score before SLED was 14.1 +/- 3.8, but decreased significantly to 7.9 +/- 1.4, 6.2 +/- 1.1, and 4.2 +/- 0.8 on days 1, 2, and 7 after SLED, respectively (P < 0.01). Three patients died on days 1, 3, and 4 after SLED, respectively. The remaining twelve patients were either cured or showed improvement at the time of discharge. The survival rate was 80 % where as mortality was 20 %. SLED may be an effective treatment option in severe snakebite patients. It can reduce mortality, thereby, resulting in increased survival rates.
BACKGROUND: The first generation of genome sequence assemblies and annotations have had a significant impact upon our understanding of the biology of the sequenced species, the phylogenetic relationships among species, the study of populations within and across species, and have informed the biology of humans. As only a few Metazoan genomes are approaching finished quality (human, mouse, fly and worm), there is room for improvement of most genome assemblies. The honey bee (Apis mellifera) genome, published in 2006, was noted for its bimodal GC content distribution that affected the quality of the assembly in some regions and for fewer genes in the initial gene set (OGSv1.0) compared to what would be expected based on other sequenced insect genomes. RESULTS: Here, we report an improved honey bee genome assembly (Amel_4.5) with a new gene annotation set (OGSv3.2), and show that the honey bee genome contains a number of genes similar to that of other insect genomes, contrary to what was suggested in OGSv1.0. The new genome assembly is more contiguous and complete and the new gene set includes ~5000 more protein-coding genes, 50% more than previously reported. About 1/6 of the additional genes were due to improvements to the assembly, and the remaining were inferred based on new RNAseq and protein data. CONCLUSIONS: Lessons learned from this genome upgrade have important implications for future genome sequencing projects. Furthermore, the improvements significantly enhance genomic resources for the honey bee, a key model for social behavior and essential to global ecology through pollination.
Triglyceride-rich lipoproteins (TRLs) undergo lipolysis by lipoprotein lipase (LPL), an enzyme that is transported to the capillary lumen by an endothelial cell protein, GPIHBP1. For LPL-mediated lipolysis to occur, TRLs must bind to the lumen of capillaries. This process is often assumed to involve heparan sulfate proteoglycans (HSPGs), but we suspected that TRL margination might instead require GPIHBP1. Indeed, TRLs marginate along the heart capillaries of wild-type but not Gpihbp1(-)/(-) mice, as judged by fluorescence microscopy, quantitative assays with infrared-dye-labeled lipoproteins, and EM tomography. Both cell-culture and in vivo studies showed that TRL margination depends on LPL bound to GPIHBP1. Notably, the expression of LPL by endothelial cells in Gpihbp1(-)/(-) mice did not restore defective TRL margination, implying that the binding of LPL to HSPGs is ineffective in promoting TRL margination. Our studies show that GPIHBP1-bound LPL is the main determinant of TRL margination.
        
Title: Therapeutic effectiveness of sustained low-efficiency hemodialysis plus hemoperfusion and continuous hemofiltration plus hemoperfusion for acute severe organophosphate poisoning Hu SL, Wang D, Jiang H, Lei QF, Zhu XH, Cheng JZ Ref: Artif Organs, 38:121, 2014 : PubMed
There is no report on the effects of sustained low-efficiency dialysis (SLED) plus hemoperfusion (HP) (SLED + HP) in patients with acute severe organophosphate (OP) poisoning (ASOPP). This study was designed to compare the therapeutic effectiveness between SLED + HP and continuous hemofiltration (CHF) plus HP (CHF + HP) in patients with ASOPP. In order to assess the two treatment methods, 56 patients with ASOPP were divided into CHF + HP group and SLED + HP group. The biochemical indicators, in-hospital duration, hemodynamic parameters, Acute Physiology, and Chronic Health Evaluation (APACHE II) score, and survival and mortality rates were compared. In both groups after treatment, the levels of serum creatine kinase isozyme MB, creatine kinase, creatinine, glutamic-oxalacetic transaminease, and glutamate-pyruvate transaminase, and the APACHE II scores on the first, second, and seventh day decreased (P < 0.05), whereas the levels of serum acetylcholinesterase increased. The two groups showed no statistical differences in in-hospital duration, biochemical indicators, APACHE II score, hemodynamic parameters, survival rate, or the mortality rate (P > 0.05). In conclusion, SLED has similar hemodynamic stability to CHF and the two treatment methods have similar effects on ASOPP patients. More importantly, SLED plus HP is relatively economical and convenient for patients with ASOPP in clinical practice.
Based on the previous work in our group and the principle of computer-aided drug design, a series of novel beta-amino pyrrole-2-carbonitrile derivatives was designed and synthesized. Compounds 8l and 9l were efficacious and selective DPP4 inhibitors resulting in decreased blood glucose in vivo. Compound 8l had moderate DPP4 inhibitory activity (IC50 = 0.05 muM) and good oral bioavailability (F = 53.2%). Compound 9l showed excellent DPP4 inhibitory activity (IC50 = 0.01 muM), good selectivity (selective ratio: DPP8/DPP4 = 898.00; DPP9/DPP4 = 566.00) against related peptidases, and good efficacy in an oral glucose tolerance tests in ICR mice and moderate PK profiles (F = 22.8%, t1/2 = 2.74 h). Moreover, compound 9l did not block hERG channel and exhibited no inhibition of liver metabolic enzymes such as CYP2C9.
        
Title: Global analysis of gene expression profiles in physic nut (Jatropha curcas L.) seedlings exposed to salt stress Zhang L, Zhang C, Wu P, Chen Y, Li M, Jiang H, Wu G Ref: PLoS ONE, 9:e97878, 2014 : PubMed
BACKGROUND: Salt stress interferes with plant growth and production. Plants have evolved a series of molecular and morphological adaptations to cope with this abiotic stress, and overexpression of salt response genes reportedly enhances the productivity of various crops. However, little is known about the salt responsive genes in the energy plant physic nut (Jatropha curcas L.). Thus, excavate salt responsive genes in this plant are informative in uncovering the molecular mechanisms for the salt response in physic nut. METHODOLOGY/PRINCIPAL FINDINGS: We applied next-generation Illumina sequencing technology to analyze global gene expression profiles of physic nut plants (roots and leaves) 2 hours, 2 days and 7 days after the onset of salt stress. A total of 1,504 and 1,115 genes were significantly up and down-regulated in roots and leaves, respectively, under salt stress condition. Gene ontology (GO) analysis of physiological process revealed that, in the physic nut, many "biological processes" were affected by salt stress, particular those categories belong to "metabolic process", such as "primary metabolism process", "cellular metabolism process" and "macromolecule metabolism process". The gene expression profiles indicated that the associated genes were responsible for ABA and ethylene signaling, osmotic regulation, the reactive oxygen species scavenging system and the cell structure in physic nut. CONCLUSIONS/SIGNIFICANCE: The major regulated genes detected in this transcriptomic data were related to trehalose synthesis and cell wall structure modification in roots, while related to raffinose synthesis and reactive oxygen scavenger in leaves. The current study shows a comprehensive gene expression profile of physic nut under salt stress. The differential expression genes detected in this study allows the underling the salt responsive mechanism in physic nut with the aim of improving its salt resistance in the future.
Drug-target residence time (t = 1/k(off), where k(off) is the dissociation rate constant) has become an important index in discovering better- or best-in-class drugs. However, little effort has been dedicated to developing computational methods that can accurately predict this kinetic parameter or related parameters, k(off) and activation free energy of dissociation (DeltaG(off) not equal). In this paper, energy landscape theory that has been developed to understand protein folding and function is extended to develop a generally applicable computational framework that is able to construct a complete ligand-target binding free energy landscape. This enables both the binding affinity and the binding kinetics to be accurately estimated. We applied this method to simulate the binding event of the anti-Alzheimer's disease drug (-)-Huperzine A to its target acetylcholinesterase (AChE). The computational results are in excellent agreement with our concurrent experimental measurements. All of the predicted values of binding free energy and activation free energies of association and dissociation deviate from the experimental data only by less than 1 kcal/mol. The method also provides atomic resolution information for the (-)-Huperzine A binding pathway, which may be useful in designing more potent AChE inhibitors. We expect this methodology to be widely applicable to drug discovery and development.
        
Title: Novel selective and irreversible mosquito acetylcholinesterase inhibitors for controlling malaria and other mosquito-borne diseases Dou D, Park JG, Rana S, Madden BJ, Jiang H, Pang YP Ref: Sci Rep, 3:1068, 2013 : PubMed
We reported previously that insect acetylcholinesterases (AChEs) could be selectively and irreversibly inhibited by methanethiosulfonates presumably through conjugation to an insect-specific cysteine in these enzymes. However, no direct proof for the conjugation has been published to date, and doubts remain about whether such cysteine-targeting inhibitors have desirable kinetic properties for insecticide use. Here we report mass spectrometric proof of the conjugation and new chemicals that irreversibly inhibited African malaria mosquito AChE with bimolecular inhibition rate constants (k(inact)/K(I)) of 3,604-458,597 M(-1)sec(-1) but spared human AChE. In comparison, the insecticide paraoxon irreversibly inhibited mosquito and human AChEs with k(inact)/K(I) values of 1,915 and 1,507 M(-1)sec(-1), respectively, under the same assay conditions. These results further support our hypothesis that the insect-specific AChE cysteine is a unique and unexplored target to develop new insecticides with reduced insecticide resistance and low toxicity to mammals, fish, and birds for the control of mosquito-borne diseases.
Rapid and sensitive detection methods are in urgent demand for the screening of extensively used organophosphorus pesticides and highly toxic nerve agents for their neurotoxicity. In this study, we developed a novel Fe(3)O(4) magnetic nanoparticle (MNP) peroxidase mimetic-based colorimetric method for the rapid detection of organophosphorus pesticides and nerve agents. The detection assay is composed of MNPs, acetylcholinesterase (AChE), and choline oxidase (CHO). The enzymes AChE and CHO catalyze the formation of H(2)O(2) in the presence of acetylcholine, which then activates MNPs to catalyze the oxidation of colorimetric substrates to produce a color reaction. After incubation with the organophosphorus neurotoxins, the enzymatic activity of AChE was inhibited and produced less H(2)O(2), resulting in a decreased catalytic oxidation of colorimetric substrates over MNP peroxidase mimetics, accompanied by a drop in color intensity. Three organophosphorus compounds were tested on the assay: acephate and methyl-paraoxon as representative organophosphorus pesticides and the nerve agent Sarin. The novel assay displayed substantial color change after incubation in organophosphorus neurotoxins in a concentration-dependent manner. As low as 1 nM Sarin, 10 nM methyl-paraoxon, and 5 muM acephate are easily detected by the novel assay. In conclusion, by employing the peroxidase-mimicking activity of MNPs, the developed colorimetric assay has the potential of becoming a screening tool for the rapid and sensitive assessment of the neurotoxicity of an overwhelming number of organophosphate compounds.
        
Title: Biochemical properties, expression profiles, and tissue localization of orthologous acetylcholinesterase-2 in the mosquito, Anopheles gambiae Zhao P, Wang Y, Jiang H Ref: Insect Biochemistry & Molecular Biology, 43:260, 2013 : PubMed
Acetylcholinesterases (AChEs) catalyze the hydrolysis of acetylcholine, a neurotransmitter for cholinergic neurotransmission in animals. Most insects studied so far possess two AChE genes: ace-1 paralogous and ace-2 orthologous to Drosophila melanogaster ace. We characterized the catalytic domain of Anopheles gambiae AChE1 in a previous study (Jiang et al., 2009) and report here biochemical properties of A. gambiae AChE2 expressed in Sf9 cells. An unknown protease in the expression system cleaved the recombinant AChE2 next to Arg(110), yielding two non-covalently associated polypeptides. A mixture of the intact and cleaved AChE2 had a specific activity of 72.3 U/mg, much lower than that of A. gambiae AChE1 (523 U/mg). The order of V(max)/K(M) values for the model substrates was acetylthiocholine > propionylthiocholine approximately acetyl-(beta-methyl)thiocholine > butyrylthiocholine. The IC(50)'s for eserine, carbaryl, BW284C51, paraoxon and malaoxon were 1.32, 13.6, 26.8, 192 and 294 nM, respectively. A. gambiae AChE2 bound eserine and carbaryl stronger than paraoxon and malaoxon, whereas eserine and malaoxon modified the active site Ser(232) faster than carbaryl or paraoxon did. Consequently, the k(i)'s were 1.173, 0.245, 0.029 and 0.018 muM(-1)min(-1) for eserine, carbaryl, paraoxon and malaoxon, respectively. Quantitative polymerase chain reactions showed a similar pattern of ace-1 and ace-2 expression. Their mRNAs were abundant in early embryos, greatly decreased in late embryos, larvae, pupae, and pharate adult, and became abundant again in adults. Both transcripts were higher in head and abdomen than thorax of adults and higher in male than female mosquitoes. Transcript levels of ace-1 were 1.9- to 361.8-fold higher than those of ace-2, depending on developmental stages and body parts. Cross-reacting polyclonal antibodies detected AChEs in adult brains, thoracic ganglia, and genital/rectal area. Activity assays, immunoblotting, and tandem mass spectrometric analysis indicated that A. gambiae AChE1 is responsible for most of acetylthiocholine hydrolysis in the head extracts. Taken together, these data indicate that A. gambiae AChE2 may play a less significant role than AChE1 does in the mosquito nervous system.
        
Title: Cholinergic and non-cholinergic functions of two acetylcholinesterase genes revealed by gene-silencing in Tribolium castaneum Lu Y, Park Y, Gao X, Zhang X, Yao J, Pang YP, Jiang H, Zhu KY Ref: Sci Rep, 2:288, 2012 : PubMed
We compared biological functions of two acetylcholinesterase genes (TcAce1 and TcAce2) in Tribolium castaneum, a globally distributed major pest of stored grain products and an emerging model organism, by using RNA interference. Although both genes expressed at all developmental stages and mainly in the brain, the transcript level of TcAce1 was 1.2- to 8.7-fold higher than that of TcAce2, depending on developmental stages. Silencing TcAce1 in 20-day larvae led to 100% mortality within two weeks after eclosion and increased larval susceptibilities to anticholinesterase insecticides. In contrast, silencing TcAce2 did not show insect mortality and significantly affect insecticide susceptibility, but delayed insect development and reduced female egg-laying and egg hatching. These results demonstrate for the first time that TcAce1 plays a major role in cholinergic functions and is the target of anticholinesterase insecticides, whereas TcAce2 plays an important, non-cholinergic role in female reproduction, embryo development, and growth of offspring.
Type 2 diabetes mellitus (T2DM) is a metabolic disease and a major challenge to healthcare systems around the world. Dipeptidyl peptidase IV (DPP-4), a serine protease, has been rapidly emerging as an effective therapeutic target for the treatment for T2DM. In this study, a series of novel DPP-4 inhibitors, featuring the pyrazole-3-carbohydrazone scaffold, have been discovered using an integrated approach of structure-based virtual screening, chemical synthesis, and bioassay. Virtual screening of SPECS Database, followed by enzymatic activity assay, resulted in five micromolar or low-to-mid-micromolar inhibitory level compounds (1-5) with different scaffold. Compound 1 was selected for the further structure modifications in considering inhibitory activity, structural variability, and synthetic accessibility. Seventeen new compounds were synthesized and tested with biological assays. Nine compounds (6e, 6g, 6k-l, and 7a-e) were found to show inhibitory effects against DPP-4. Molecular docking models give rational explanation about structure-activity relationships. Based on eight DPP-4 inhibitors (1-5, 6e, 6k, and 7d), the best pharmacophore model hypo1 was obtained, consisting of one hydrogen bond donor (HBD), one hydrogen bond acceptor (HBA), and two hydrophobic (HY) features. Both docking models and pharmacophore mapping results are in agreement with pharmacological results. The present studies give some guiding information for further structural optimization and are helpful for future DPP-4 inhibitors design.
        
Title: Theoretical study of the mechanism of proton transfer in the esterase EstB from Burkholderia gladioli Chen L, Kong X, Liang Z, Ye F, Yu K, Dai W, Wu D, Luo C, Jiang H Ref: J Phys Chem B, 115:13019, 2011 : PubMed
Esterase EstB from Burkholderia gladioli belongs to a novel class of esterases homologous to penicillin binding proteins, notably DD-peptidase and class C beta-lactamases. It can cleave the side chain acetyl ester group from cephalosporins leaving the beta-lactam ring intact, which is a feature of relevance to industrial biocatalytic applications in the production of semisynthetic cephalosporin derivatives. Due to its important role as a potential biocatalyst in industry, the significance of EstB has been greatly appreciated. However, the molecular basis for those residues involving catalysis of EstB remains elusive. By analyzing the crystal structure of EstB, we identified a conserved water molecule in active-site cavity which might mediate an intramolecular proton transfer (PT) from Lys78 to Asp186 via Tyr133. Then a combined computational approach including molecular dynamics (MD) simulations and quantum mechanics/molecular mechanics (QM/MM) calculations was employed to explore this presumable PT mode in the native enzyme. A 30 ns MD simulation of the enzyme highlights the conserved H-bond network involving Lys78, Tyr133, Asp186, and the conserved water molecule in the active site. In particular, the water molecule did not exchange with bulk solvent, indicating its structural and functional relevance. The energy profile calculated by QM/MM approach displayed a notably low PT barrier (2.2 kcal/mol) and a dramatic energy difference (14.1 kcal/mol) in reactants versus immediate products, which implies that the proposed proton shuttle is concerted and energetically favorable. Our studies offer a reasonable pathway to yield a free base by assisting Lys78 deprotonation, thereby paving the way for future studies on Ser75 activation that is a critical step in catalysis by EstB, as well as biocatalyst development by rational attempts. This PT mode would also afford clues for the forthcoming investigation on acyltransferase LovD that is homologous to EstB.
Epoxyeicosatrienoic acids (EETs) are vasodilator, natriuretic, and antiinflammatory lipid mediators. Both cis- and trans-EETs are stored in phospholipids and in red blood cells (RBCs) in the circulation; the maximal velocity (V(max)) of trans-EET hydrolysis by soluble epoxide hydrolase (sEH) is threefold that of cis-EETs. Because RBCs of the spontaneously hypertensive rat (SHR) exhibit increased sEH activity, a deficiency of trans-EETs in the SHR was hypothesized to increase blood pressure (BP). This prediction was fulfilled, since sEH inhibition with cis-4-[4-(3-adamantan-1-ylureido)cyclohexyloxy]benzoic acid (AUCB; 2 mg.kg(-1).day(-1) for 7 days) in the SHR reduced mean BP from 176 +/- 8 to 153 +/- 5 mmHg (P < 0.05), whereas BP in the control Wistar-Kyoto rat (WKY) was unaffected. Plasma levels of EETs in the SHR were lower than in the age-matched control WKY (16.4 +/- 1.6 vs. 26.1 +/- 1.8 ng/ml; P < 0.05). The decrease in BP in the SHR treated with AUCB was associated with an increase in plasma EETs, which was mostly accounted for by increasing trans-EET from 4.1 +/- 0.2 to 7.9 +/- 1.5 ng/ml (P < 0.05). Consistent with the effect of increased plasma trans-EETs and reduced BP in the SHR, the 14,15-trans-EET was more potent (ED(50) 10(-10) M; maximum dilation 59 +/- 15 mum) than the cis-isomer (ED(50) 10(-9) M; maximum dilation 30 +/- 11 mum) in relaxing rat preconstricted arcuate arteries. The 11,12-EET cis- and trans-isomers were equipotent dilators as were the 8,9-EET isomers. In summary, inhibition of sEH resulted in a twofold increase in plasma trans-EETs and reduced mean BP in the SHR. The greater vasodilator potency of trans- vs. cis-EETs may contribute to the antihypertensive effects of sEH inhibitors.
        
Title: Benzenediol-berberine hybrids: multifunctional agents for Alzheimer's disease Jiang H, Wang X, Huang L, Luo Z, Su T, Ding K, Li X Ref: Bioorganic & Medicinal Chemistry, 19:7228, 2011 : PubMed
We designed and synthesized a series of hybrid molecules, in an effort to identify novel multifunctional drug candidates for Alzheimer's disease (AD), by reacting berberine with benzenediol, melatonin, and ferulic acid. The products were evaluated for: (i) the ability to inhibit multiple cholinesterases (ChEs); (ii) the capacity to prevent amyloid beta (Abeta) aggregation; and (iii) antioxidant activity. All of the derivatives were better antioxidants, and inhibited Abeta aggregation to a greater extent, than the lead compound, berberine. Two of the hybrids, in particular, have the potential to be excellent candidates for AD therapy: the berberine-pyrocatechol hybrid (compound 8) was a much better inhibitor of acetylcholinesterase (AChE) than unconjugated berberine (IC(50): 0.123 vs 0.374 muM); and the berberine-hydroquinone hybrid (compound 12) displayed high antioxidant activity, could inhibit AChE (IC(50) of 0.460 muM), and had the greatest ability to inhibit Abeta aggregation.
The transient opening of a backdoor in the active-site wall of acetylcholinesterase, one of nature's most rapid enzymes, has been suggested to contribute to the efficient traffic of substrates and products. A crystal structure of Torpedo californica acetylcholinesterase in complex with the peripheral-site inhibitor aflatoxin is now presented, in which a tyrosine at the bottom of the active-site gorge rotates to create a 3.4-A wide exit channel. Molecular dynamics simulations show that the opening can be further enlarged by movement of Trp84. The crystallographic and molecular dynamics simulation data thus point to the interface between Tyr442 and Trp84 as the key element of a backdoor, whose opening permits rapid clearance of catalysis products from the active site. Furthermore, the crystal structure presented provides a novel template for rational design of inhibitors and reactivators, including anti-Alzheimer drugs and antidotes against organophosphate poisoning.
Acetylcholinesterase (AChE) is emerging as an important contributor to apoptosis in various cell types. However, overexpression of AChE does not initiate apoptosis, and cells which express AChE at basal levels grow normally, suggesting that AChE may function differently between normal and apoptotic conditions. In this study, we determined that an AChE-derived protein ( approximately 55 kDa) positively correlated with cellular apoptotic levels. The 55 kDa AChE protein was not a result of a novel splice variant of the AChE primary transcript. Instead, it was determined to be a cleaved fragment of the full-length 68 kDa AChE protein that could not be inhibited by cycloheximide (CHX) but could be suppressed by caspase inhibitors in apoptotic PC-12 cells. Furthermore, activation of the Akt cascade abolished the 55 kDa protein, and both AChE protein forms (68 and 55 kDa) accumulated in the nucleus during apoptosis. In a mouse model for ischemia/reperfusion (I/R)-induced acute renal failure, the 55 kDa AChE protein was detected in the impaired organs but not in the normal ones, and its levels correlated with the genotype of the mice. In summary, a 55 kDa AChE protein resulting from the cleavage of 68 kDa AChE is induced during apoptosis, and it is negatively regulated by the Akt pathway. This study suggests that an alternative form of AChE may play a role in apoptosis.
We report here genome sequences and comparative analyses of three closely related parasitoid wasps: Nasonia vitripennis, N. giraulti, and N. longicornis. Parasitoids are important regulators of arthropod populations, including major agricultural pests and disease vectors, and Nasonia is an emerging genetic model, particularly for evolutionary and developmental genetics. Key findings include the identification of a functional DNA methylation tool kit; hymenopteran-specific genes including diverse venoms; lateral gene transfers among Pox viruses, Wolbachia, and Nasonia; and the rapid evolution of genes involved in nuclear-mitochondrial interactions that are implicated in speciation. Newly developed genome resources advance Nasonia for genetic research, accelerate mapping and cloning of quantitative trait loci, and will ultimately provide tools and knowledge for further increasing the utility of parasitoids as pest insect-control agents.
        
Title: Long route or shortcut? A molecular dynamics study of traffic of thiocholine within the active-site gorge of acetylcholinesterase Xu Y, Colletier JP, Weik M, Qin G, Jiang H, Silman I, Sussman JL Ref: Biophysical Journal, 99:4003, 2010 : PubMed
The principal role of acetylcholinesterase is termination of nerve impulse transmission at cholinergic synapses, by rapid hydrolysis of the neurotransmitter acetylcholine to acetate and choline. Its active site is buried at the bottom of a deep and narrow gorge, at the rim of which is found a second anionic site, the peripheral anionic site. The fact that the active site is so deeply buried has raised cogent questions as to how rapid traffic of substrate and products occurs in such a confined environment. Various theoretical and experimental approaches have been used to solve this problem. Here, multiple conventional molecular dynamics simulations have been performed to investigate the clearance of the product, thiocholine, from the active-site gorge of acetylcholinesterase. Our results indicate that thiocholine is released from the peripheral anionic site via random pathways, while three exit routes appear to be favored for its release from the active site, namely, along the axis of the active-site gorge, and through putative back- and side-doors. The back-door pathway is that via which thiocholine exits most frequently. Our results are in good agreement with kinetic and kinetic-crystallography studies. We propose the use of multiple molecular dynamics simulations as a fast yet accurate complementary tool in structural studies of enzymatic trafficking.
        
Title: Heterologous expression, purification, and biochemical characterization of a greenbug (Schizaphis graminum) acetylcholinesterase encoded by a paralogous gene (ace-1) Zhao P, Zhu KY, Jiang H Ref: J Biochem Mol Toxicol, 24:51, 2010 : PubMed
Acetylcholinesterase is a critical enzyme in the regulation of cholinergic neurotransmission in insects. To produce Schizaphis graminum acetylcholinesterase-1 for structure-function analysis, we constructed a recombinant baculovirus to infect Sf9 cells, which secreted the soluble protein at a final concentration of 4.0 mg/L. The purified enzyme had an apparent M(r) of 70 and 130 kDa in the reducing and nonreducing SDS-polyacrylamide gels, respectively, indicating that it formed a dimer via an intermolecular disulfide bond. The fresh enzyme had a specific activity of 245 U/mg, which stabilized at a lower level (115 U/mg) in storage. The Michaelis constant and maximum velocity were 88.3 +/- 9.6 microM and 133.2 +/- 1.6 U/mg for acetylthiocholine iodide, 113.9 +/- 12.5 muM and 106.4 +/- 3.0 U/mg for acetyl(beta-methyl)thiocholine iodide, 68.9 +/- 7.8 microM and 76.7 +/- 1.0 U/mg for propionylthiocholine iodide, and 201.1 +/- 21.0 microM and 4.4 +/- 0.1 U/mg for S-butyrylthiocholine iodide, respectively. The IC(50) values (5 min, room temperature) of ethopropazine, BW284C51, carbaryl, eserine, malaoxon, and paraoxon were 102, 1.66, 0.94, 0.20, 0.061, 0.016 microM, respectively. The bimolecular reaction constants (k(i)) were (6.50 +/- 0.40) x 10(4) for carbaryl, (1.00 +/- 0.16) x 10(5) for eserine, (4.70 +/- 0.13) x 10(5) for malaoxon, and (9.06 +/- 0.23) x 10(5) M(-1) min(-1) for paraoxon. The enzyme was also inhibited by one of its products, choline, at concentrations higher than 20 mM, suggesting that choline bound to an anionic site and regulated the enzymatic activity.
To understand the biology and evolution of ruminants, the cattle genome was sequenced to about sevenfold coverage. The cattle genome contains a minimum of 22,000 genes, with a core set of 14,345 orthologs shared among seven mammalian species of which 1217 are absent or undetected in noneutherian (marsupial or monotreme) genomes. Cattle-specific evolutionary breakpoint regions in chromosomes have a higher density of segmental duplications, enrichment of repetitive elements, and species-specific variations in genes associated with lactation and immune responsiveness. Genes involved in metabolism are generally highly conserved, although five metabolic genes are deleted or extensively diverged from their human orthologs. The cattle genome sequence thus provides a resource for understanding mammalian evolution and accelerating livestock genetic improvement for milk and meat production.
        
Title: Recombinant expression and biochemical characterization of the catalytic domain of acetylcholinesterase-1 from the African malaria mosquito, Anopheles gambiae Jiang H, Liu S, Zhao P, Pope C Ref: Insect Biochemistry & Molecular Biology, 39:646, 2009 : PubMed
Acetylcholinesterases (AChEs) and their genes from susceptible and resistant insects have been extensively studied to understand the molecular basis of target site insensitivity. Due to the existence of other resistance mechanisms, however, it can be problematic to correlate directly a mutation with the resistant phenotype. An alternative approach involves recombinant expression and characterization of highly purified wild-type and mutant AChEs, which serves as a reliable platform for studying structure-function relationships. We expressed the catalytic domain of Anopheles gambiae AChE1 (r-AgAChE1) using the baculovirus system and purified it 2,500-fold from the conditioned medium to near homogeneity. While K(M)'s of r-AgAChE1 were comparable for ATC, AbetaMTC, PTC, and BTC, V(max)'s were substantially different. The IC(50)'s for eserine, carbaryl, paraoxon, BW284C51, malaoxon, and ethopropazine were 8.3, 72.5, 83.6, 199, 328, and 6.59 x 10(4) nM, respectively. We determined kinetic constants for inhibition of r-AgAChE1 by four of these compounds. The enzyme bound eserine or paraoxon stronger than carbaryl or malaoxon. Because the covalent modification of r-AgAChE1 by eserine occurred faster than that by the other compounds, eserine is more potent than paraoxon, carbaryl, and malaoxon. Furthermore, we found that choline inhibited r-AgAChE1, a phenomenon related to the enzyme activity decrease at high concentrations of acetylcholine.
        
Title: Novel anti-Alzheimer's dimer Bis(7)-cognitin: cellular and molecular mechanisms of neuroprotection through multiple targets Li W, Mak M, Jiang H, Wang Q, Pang Y, Chen K, Han Y Ref: Neurotherapeutics, 6:187, 2009 : PubMed
Alzheimer's disease (AD) is a progressive and degenerative brain disorder that has emerged as one of the major public health problems in adults. Unfortunately, its molecular pathology and therapeutic strategies remain elusive. Because there are multiple factors closely indicated in the pathogenesis of AD, multiple drug therapy will be required to address the varied pathological aspects of this disease. Existing pharmacological approaches with one-molecule-one-target are limited in their ability to modify the pathology of AD. Novel therapeutics strategies comprise multifunctional compounds specifically designed to target concurrently on different sites at multifactorial etiopathogenesis of AD, thereby providing greater therapeutic efficacy. Over the past decade, our group has developed several series of dimeric acetylcholinesterase (AChE) inhibitors derived from tacrine and huperzine A, a unique anti-Alzheimer's drug originally discovered from a traditional Chinese medicinal plant. Bis(7)-Cognitin, one of our novel dimers, through inhibition of AChE, N-methyl-D-aspartate receptor, nitric oxide synthase, and amyloid precursor protein/beta-amyloid cascade concurrently, possesses remarkable neuroprotective activities. More importantly, the synergism between these targets might serve as one of the most effective therapeutic strategies to arrest/modify pathological process of AD in addition to improving the cognitive functions for AD.
        
Title: A rapid and efficient method for directed screening of lipase-producing Burkholderia cepacia complex strains with organic solvent tolerance from rhizosphere Shu Z, Lin R, Jiang H, Zhang Y, Wang M, Huang J Ref: J Biosci Bioeng, 107:658, 2009 : PubMed
Lipase from Burkholderia cepacia strain is one of the most versatile biocatalysts and is used widely in many biotechnological application fields including detergent additives, the resolution of racemic compounds, etc. Based on the known whole genomic information of B. cepacia strain, both ampicillin and kanamycin were added to the TB-T medium to screen B. cepacia complex stains from rhizosphere soil samples. The selected colonies from the modified TB-T medium were then qualitatively determined the ability to produce extracellular lipase on the rhodamine B-olive oil agar plates. A total of 35 lipolytic pseudo-B. cepacia complex strains were isolated and the positive rate of lipolytic bacteria was 65%. Among them, 15 pseudo-B. cepacia complex strains showed tolerance to benzene, n-hexane and n-heptane at concentration of 10% (V/V) and were identified by the recA gene sequence. All of the 14 lipolytic bacteria were identified as B. cepacia complex strains except that the recA gene sequence of one lipolytic bacterium, strain ZMB009, was not obtained.
BACKGROUND: Enterococcus faecalis has emerged as a major hospital pathogen. To explore its diversity, we sequenced E. faecalis strain OG1RF, which is commonly used for molecular manipulation and virulence studies. RESULTS: The 2,739,625 base pair chromosome of OG1RF was found to contain approximately 232 kilobases unique to this strain compared to V583, the only publicly available sequenced strain. Almost no mobile genetic elements were found in OG1RF. The 64 areas of divergence were classified into three categories. First, OG1RF carries 39 unique regions, including 2 CRISPR loci and a new WxL locus. Second, we found nine replacements where a sequence specific to V583 was substituted by a sequence specific to OG1RF. For example, the iol operon of OG1RF replaces a possible prophage and the vanB transposon in V583. Finally, we found 16 regions that were present in V583 but missing from OG1RF, including the proposed pathogenicity island, several probable prophages, and the cpsCDEFGHIJK capsular polysaccharide operon. OG1RF was more rapidly but less frequently lethal than V583 in the mouse peritonitis model and considerably outcompeted V583 in a murine model of urinary tract infections. CONCLUSION: E. faecalis OG1RF carries a number of unique loci compared to V583, but the almost complete lack of mobile genetic elements demonstrates that this is not a defining feature of the species. Additionally, OG1RF's effects in experimental models suggest that mediators of virulence may be diverse between different E. faecalis strains and that virulence is not dependent on the presence of mobile genetic elements.
Erythrocytes serve as reservoirs for cis- and trans-epoxyeicosatrienoic acids (EETs). Incubation of rat red blood cells (RBCs) with cis- and trans-EETs produces threo- and erythro-dihydroxyeicosatrienoic acids, respectively. The V(max) of EET hydrolysis by rat intact RBCs (2.35 +/- 0.24 pmol/min/10(8) RBCs for 14,15-trans-EET) decreased by approximately 2 to 3-fold sequentially from 14,15-, 11,12- to 8,9-EETs for both cis- and trans-isomers. The V(max) of trans-EET hydrolysis by RBCs is approximately 2 to 3 times that of the corresponding cis-EETs. Incubation of EETs with recombinant murine soluble epoxide hydrolase (sEH) yielded the same geometric and regio preferences of EET hydrolysis as with rat intact RBCs. The principal epoxide hydrolase activity for EET hydrolysis (approximately 90%) is present in the erythrocyte cytosol. Western blots of sEH suggested a concentration of sEH protein to be approximately 2 microg/mg protein or 0.4 microg/10(9) RBCs. The apparent K(m) values of EETs were between 1 and 2 microM, close to the K(m) for purified sEH as reported. Erythrocyte hydration of cis- and trans-EETs was blocked by sEH inhibitors, 1,3-dicyclohexylurea and 4-[4-(3-adamantan-1-ylureido)cyclohexyloxy]benzoic acid. Erythrocyte sEH activity was inhibited more than 80% by 0.2% bovine serum albumin in the buffer. Preferred hydrolysis of 14,15-EETs and trans-epoxides characterizes sEH activity in RBCs that regulates the hydrolysis and release of cis- and trans-EETs in the circulation. Inhibition of sEH has produced antihypertensive and antiinflammatory effects. Because plasma trans-EETs would increase more than cis-EETs with sEH inhibition, the potential roles of trans-EETs and erythrocyte sEH in terms of circulatory regulation deserve attention.
        
Title: Acetylcholinesterase and apoptosis. A novel perspective for an old enzyme Jiang H, Zhang XJ Ref: Febs J, 275:612, 2008 : PubMed
Acetylcholinesterase is indispensable for terminating acetylcholine-mediated neurotransmission at cholinergic synapses. In addition, there is evidence to suggest that acetylcholinesterase contributes to various physiological processes through its involvement in the regulation of cell proliferation, differentiation and survival. The effects of acetylcholinesterase depend on the cell type and cell-differentiation state, the modulation of expression levels, cellular distribution and binding with its protein partners. This minireview highlights recent progress that has advanced our understanding of the role of acetylcholinesterase in the process of cell proliferation and apoptosis.
        
Title: Acute toxicity of the pesticide methomyl on the topmouth gudgeon (Pseudorasbora parva): mortality and effects on four biomarkers Li H, Jiang H, Gao X, Wang X, Qu W, Lin R, Chen J Ref: Fish Physiol Biochem, 34:209, 2008 : PubMed
In this study, the acute toxicity of the pesticide methomyl on the topmouth gudgeon (Pseudorasbora parva) was evaluated using mortality and the activity of the enzymes acetylcholinesterase (AChE), glutathione S-transferases (GSTs), glutamic oxaloacetic transaminase (GOT) and glutamic pyruvic transaminase (GPT) as endpoints. LC50 values were 1.228, 0.782, 0.538, and 0.425 mg/l at 24, 48, 72, and 96 h of exposure, respectively. Methomyl caused a sharp decrease in specific activity of brain AChE around 48% at concentrations between 0.043 and 0.213 mg/l. A reduction higher than 40% in liver GST activity at concentrations between 0.085 and 0.213 mg/l was found, whereas no significant effects were observed in intestinal GST. A significant concentration-dependent decrease of GOT activity was found after 24 h of exposure to the pesticide but not after 96 h. No significant effects on GPT activity were observed. These results indicate that at the concentrations tested, methomyl is acutely toxic to the species P. parva, causing mortality, neurotoxic effects, and changes in some hepatic enzymes.
Tribolium castaneum is a member of the most species-rich eukaryotic order, a powerful model organism for the study of generalized insect development, and an important pest of stored agricultural products. We describe its genome sequence here. This omnivorous beetle has evolved the ability to interact with a diverse chemical environment, as shown by large expansions in odorant and gustatory receptors, as well as P450 and other detoxification enzymes. Development in Tribolium is more representative of other insects than is Drosophila, a fact reflected in gene content and function. For example, Tribolium has retained more ancestral genes involved in cell-cell communication than Drosophila, some being expressed in the growth zone crucial for axial elongation in short-germ development. Systemic RNA interference in T. castaneum functions differently from that in Caenorhabditis elegans, but nevertheless offers similar power for the elucidation of gene function and identification of targets for selective insect control.
        
Title: Induced-fit or preexisting equilibrium dynamics? Lessons from protein crystallography and MD simulations on acetylcholinesterase and implications for structure-based drug design Xu Y, Colletier JP, Jiang H, Silman I, Sussman JL, Weik M Ref: Protein Science, 17:601, 2008 : PubMed
Crystal structures of acetylcholinesterase complexed with ligands are compared with side-chain conformations accessed by native acetylcholinesterase in molecular dynamics (MD) simulations. Several crystallographic conformations of a key residue in a specific binding site are accessed in a simulation of native acetylcholinesterase, although not seen in rotomer plots. Conformational changes upon ligand binding thus involve preexisting equilibrium dynamics. Consequently, rational drug design could benefit significantly from conformations monitored by MD simulations of native targets.
The high aromatic content of the deep and narrow active-site gorge of acetylcholinesterase (AChE) is a remarkable feature of this enzyme. Here, we analyze conformational flexibility of the side chains of the 14 conserved aromatic residues in the active-site gorge of Torpedo californica AChE based on the 47 three-dimensional crystal structures available for the native enzyme, and for its complexes and conjugates, and on a 20-ns molecular dynamics (MD) trajectory of the native enzyme. The degree of flexibility of these 14 aromatic side chains is diverse. Although the side-chain conformations of F330 and W279 are both very flexible, the side-chain conformations of F120, W233, W432, Y70, Y121, F288, F290 and F331 appear to be fixed. Residues located on, or adjacent to, the Omega-loop (C67-C94), namely W84, Y130, Y442, and Y334, display different flexibilities in the MD simulations and in the crystal structures. An important outcome of our study is that the majority of the side-chain conformations observed in the 47 Torpedo californica AChE crystal structures are faithfully reproduced by the MD simulation on the native enzyme. Thus, the protein can assume these conformations even in the absence of the ligand that permitted their experimental detection. These observations are pertinent to structure-based drug design.
        
Title: The JNK/AP1/ATF2 pathway is involved in H2O2-induced acetylcholinesterase expression during apoptosis Zhang JY, Jiang H, Gao W, Wu J, Peng K, Shi YF, Zhang XJ Ref: Cell Mol Life Sciences, 65:1435, 2008 : PubMed
We show that H2O2 increases acetylcholinesterase (AChE) expression via transcriptional activation through c-Jun N-terminal kinase (JNK), since the JNK inhibitor SP600125, but not the extracellular signal-regulated kinase (ERK) pathway inhibitor PD98059 or p38 kinase inhibitor SB203580, attenuated H2O2-induced AChE expression and its promoter activity. Overexpression of hemagglutinin (HA)-JNK increases H2O2-induced AChE expression and its promoter activity, whereas the dominant negative mutant form of JNK suppressed H2O2-induced AChE expression and promoter activity. Mutation analysis indicates that the major response elements for JNK in the AChE promoter are the AP1-like element (TGAGTCT) site, located within the -1565/-1569 region of the AChE promoter, and the ATF2 element (CCACGTCA), within the -2185/-2177 region. The AP1-like element binds to the transcription factors, c-jun and ATF2, while the ATF2 element binds mainly ATF2. Taken together, our results strongly suggest that H2O2 induces AChE expression via the JNK/AP1/ ATF2 signaling pathway.
The rhesus macaque (Macaca mulatta) is an abundant primate species that diverged from the ancestors of Homo sapiens about 25 million years ago. Because they are genetically and physiologically similar to humans, rhesus monkeys are the most widely used nonhuman primate in basic and applied biomedical research. We determined the genome sequence of an Indian-origin Macaca mulatta female and compared the data with chimpanzees and humans to reveal the structure of ancestral primate genomes and to identify evidence for positive selection and lineage-specific expansions and contractions of gene families. A comparison of sequences from individual animals was used to investigate their underlying genetic diversity. The complete description of the macaque genome blueprint enhances the utility of this animal model for biomedical research and improves our understanding of the basic biology of the species.
BACKGROUND: Bacillus spores are notoriously resistant to unfavorable conditions such as UV radiation, gamma-radiation, H2O2, desiccation, chemical disinfection, or starvation. Bacillus pumilus SAFR-032 survives standard decontamination procedures of the Jet Propulsion Lab spacecraft assembly facility, and both spores and vegetative cells of this strain exhibit elevated resistance to UV radiation and H2O2 compared to other Bacillus species. PRINCIPAL FINDINGS: The genome of B. pumilus SAFR-032 was sequenced and annotated. Lists of genes relevant to DNA repair and the oxidative stress response were generated and compared to B. subtilis and B. licheniformis. Differences in conservation of genes, gene order, and protein sequences are highlighted because they potentially explain the extreme resistance phenotype of B. pumilus. The B. pumilus genome includes genes not found in B. subtilis or B. licheniformis and conserved genes with sequence divergence, but paradoxically lacks several genes that function in UV or H2O2 resistance in other Bacillus species. SIGNIFICANCE: This study identifies several candidate genes for further research into UV and H2O2 resistance. These findings will help explain the resistance of B. pumilus and are applicable to understanding sterilization survival strategies of microbes.
        
Title: Study on dual-site inhibitors of acetylcholinesterase: Highly potent derivatives of bis- and bifunctional huperzine B He XC, Feng S, Wang ZF, Shi Y, Zheng S, Xia Y, Jiang H, Tang XC, Bai D Ref: Bioorganic & Medicinal Chemistry, 15:1394, 2007 : PubMed
Natural (-)-huperzine B (HupB), isolated from Chinese medicinal herb, displayed moderate inhibitory activity of acetylcholinesterase (AChE). Based on the active dual-site of AChE, a series of novel derivatives of bis- and bifunctional HupB were designed and synthesized. The AChE inhibition potency of most derivatives of HupB was enhanced about 2-3 orders of magnitude as compared with the parental HupB. Among bis-HupB derivatives, 12h exhibited the most potent in the AChE inhibition and has been evaluated for its pharmacological actions in vivo on ChE inhibition, cognitive enhancement, and neuroprotection. The docking study on the bis-HupB derivatives 12 series with TcAChE has demonstrated that the ligands bound to the dual-site of the enzyme in different level.
BACKGROUND: Community acquired (CA) methicillin-resistant Staphylococcus aureus (MRSA) increasingly causes disease worldwide. USA300 has emerged as the predominant clone causing superficial and invasive infections in children and adults in the USA. Epidemiological studies suggest that USA300 is more virulent than other CA-MRSA. The genetic determinants that render virulence and dominance to USA300 remain unclear. RESULTS: We sequenced the genomes of two pediatric USA300 isolates: one CA-MRSA and one CA-methicillin susceptible (MSSA), isolated at Texas Children's Hospital in Houston. DNA sequencing was performed by Sanger dideoxy whole genome shotgun (WGS) and 454 Life Sciences pyrosequencing strategies. The sequence of the USA300 MRSA strain was rigorously annotated. In USA300-MRSA 2658 chromosomal open reading frames were predicted and 3.1 and 27 kilobase (kb) plasmids were identified. USA300-MSSA contained a 20 kb plasmid with some homology to the 27 kb plasmid found in USA300-MRSA. Two regions found in US300-MRSA were absent in USA300-MSSA. One of these carried the arginine deiminase operon that appears to have been acquired from S. epidermidis. The USA300 sequence was aligned with other sequenced S. aureus genomes and regions unique to USA300 MRSA were identified. CONCLUSION: USA300-MRSA is highly similar to other MRSA strains based on whole genome alignments and gene content, indicating that the differences in pathogenesis are due to subtle changes rather than to large-scale acquisition of virulence factor genes. The USA300 Houston isolate differs from another sequenced USA300 strain isolate, derived from a patient in San Francisco, in plasmid content and a number of sequence polymorphisms. Such differences will provide new insights into the evolution of pathogens.
        
Title: Nerve growth factor prevents the apoptosis-associated increase in acetylcholinesterase activity after hydrogen peroxide treatment by activating Akt Jiang H, Zhang J, Zhu H, Li H, Zhang X Ref: Acta Biochim Biophys Sin (Shanghai), 39:46, 2007 : PubMed
Acetylcholinesterase (AChE) is thought to play an important role during apoptosis. Our results showed that H2O2 induced AChE activity, a functional marker in apoptosis, increases in neuronal-like PC12 cells. Glutathione, which is involved in cellular redox homeostasis, inhibited the increase of AChE activity, suggesting that reactive oxygen species (ROS) play a key role in this process. Further investigation showed that the elevation of AChE was observed after the degradation of Akt, release of cytochrome c from mitochondria into the cytosol, and activation of caspase family members. When nerve growth factor (NGF) was present, with the maintenance of Akt level, the elevation of AChE, the cytochrome c diffusion, as well as apoptosis were markedly attenuated in H2O2-treated PC12 cells. However, wortmannin, an inhibitor of the PI3K/Akt pathway, accelerated the apoptosis and increased the AChE activity. The overexpression of constitutively activated Akt, which is a downstream signalling element of the NGF receptor TrkA, delayed mitochondrial collapse and inhibited elevation of AChE activity. Thus, NGF prevented apoptosis and elevation of AChE activity by activating the Akt pathway and stabilizing the function of mitochondria.
        
Title: 3D-QSAR studies on fluoropyrrolidine amides as dipeptidyl peptidase IV inhibitors by CoMFA and CoMSIA Zeng J, Liu G, Tang Y, Jiang H Ref: J Mol Model, 13:993, 2007 : PubMed
Three-dimensional quantitative structure-activity relationship (3D-QSAR) analyses using CoMFA and CoMSIA methods were conducted on a series of fluoropyrrolidine amides as dipeptidyl peptidase IV (DP-IV) inhibitors. The selected ligands were docked into the binding site of the 3D model of DP-IV using the GOLD software, and the possible interaction models between DP-IV and the inhibitors were obtained. Based on the binding conformations of these fluoropyrrolidine amides and their alignment inside the binding pocket of DP-IV, predictive 3D-QSAR models were established by CoMFA and CoMSIA analyses, which had conventional r2 and cross-validated coefficient values ([Formula: see text]) up to 0.982 and 0.555 for CoMFA and 0.953 and 0.613 for CoMSIA, respectively. The predictive ability of these models was validated by six compounds that were in the testing set. Structure-based investigations and the final 3D-QSAR results provide the guide for designing new potent inhibitors.
        
Title: Regulation of acetylcholinesterase expression by calcium signaling during calcium ionophore A23187- and thapsigargin-induced apoptosis Zhu H, Gao W, Jiang H, Jin QH, Shi YF, Tsim KWK, Zhang XJ Ref: International Journal of Biochemistryistry & Cell Biology, 39:93, 2007 : PubMed
We have recently reported that acetylcholinesterase expression was induced during apoptosis in various cell types. In the current study we provide evidence to suggest that the induction of acetylcholinesterase expression during apoptosis is regulated by the mobilization of intracellular Ca(2+). During apoptosis, treatment of HeLa and MDA-MB-435s cells with the calcium ionophore A23187 resulted in a significant increase in acetylcholinesterase mRNA and protein levels. Chelation of intracellular Ca(2+) by BAPTA-AM (1,2-bis-(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester), an intracellular Ca(2+) chelator, inhibited acetylcholinesterase expression. A23187 also enhanced the stability of acetylcholinesterase mRNA and increased the activity of acetylcholinesterase promoter, effects that were blocked by BAPTA-AM. Perturbations of cellular Ca(2+) homeostasis by thapsigargin resulted in the increase of acetylcholinesterase expression as well as acetylcholinesterase promoter activity during thapsigargin induced apoptosis in HeLa and MDA-MB-435s cells, effects that were also inhibited by BAPTA-AM. We further demonstrated that the transactivation of the human acetylcholinesterase promoter by A23187 and thapsigargin was partially mediated by a CCAAT motif within the -1270 to -1248 fragment of the human acetylcholinesterase promoter. This motif was able to bind to CCAAT binding factor (CBF/NF-Y). These results strongly suggest that cytosolic Ca(2+) plays a key role in acetylcholinesterase regulation during apoptosis induced by A23187 and thapsigargin.
We previously reported that acetylcholinesterase plays a critical role in apoptosis and its expression is regulated by Ca(2+) mobilization. In the present study, we show that activated calpain, a cytosolic calcium-activated cysteine protease, and calcineurin, a calcium-dependent protein phosphatase, regulate acetylcholinesterase expression during A23187-induced apoptosis. The calpain inhibitor, calpeptin, and the calcineurin inhibitors, FK506 and cyclosporine A, inhibited acetylcholinesterase expression at both mRNA and protein levels and suppressed the activity of the human acetylcholinesterase promoter. In contrast, overexpression of constitutively active calcineurin significantly activated the acetylcholinesterase promoter. Furthermore, we identify a role for the transcription factor NFAT (nuclear factor of activated T cells), a calcineurin target, in regulating the acetylcholinesterase promoter during ionophore-induced apoptosis. Overexpression of human NFATc3 and NFATc4 greatly increased the acetylcholinesterase promoter activity in HeLa cells treated with A23187. Overexpression of constitutive nuclear NFATc4 activated the acetylcholinesterase promoter independent of A23187, whereas overexpression of dominant-negative NFAT blocked A23187-induced acetylcholinesterase promoter activation. These results indicate that calcineurin mediates acetylcholinesterase expression during apoptosis.
        
Title: Detoxication of pyrethroid insecticides by recombinant carboxylesterase from peach-potato aphid (Myzus persicae) Cong J, Lan WS, Jiang H, Jiang SR, Qiao CL Ref: Bulletin of Environmental Contamination & Toxicology, 76:914, 2006 : PubMed
The draft genome sequence of Mannheimia haemolytica A1, the causative agent of bovine respiratory disease complex (BRDC), is presented. Strain ATCC BAA-410, isolated from the lung of a calf with BRDC, was the DNA source. The annotated genome includes 2,839 coding sequences, 1,966 of which were assigned a function and 436 of which are unique to M. haemolytica. Through genome annotation many features of interest were identified, including bacteriophages and genes related to virulence, natural competence, and transcriptional regulation. In addition to previously described virulence factors, M. haemolytica encodes adhesins, including the filamentous hemagglutinin FhaB and two trimeric autotransporter adhesins. Two dual-function immunoglobulin-protease/adhesins are also present, as is a third immunoglobulin protease. Genes related to iron acquisition and drug resistance were identified and are likely important for survival in the host and virulence. Analysis of the genome indicates that M. haemolytica is naturally competent, as genes for natural competence and DNA uptake signal sequences (USS) are present. Comparison of competence loci and USS in other species in the family Pasteurellaceae indicates that M. haemolytica, Actinobacillus pleuropneumoniae, and Haemophilus ducreyi form a lineage distinct from other Pasteurellaceae. This observation was supported by a phylogenetic analysis using sequences of predicted housekeeping genes.
The gamma-proteobacterium Francisella tularensis is one of the most infectious human pathogens, and the highly virulent organism F. tularensis subsp. tularensis (type A) and less virulent organism F. tularensis subsp. holarctica (type B) are most commonly associated with significant disease in humans and animals. Here we report the complete genome sequence and annotation for a low-passage type B strain (OSU18) isolated from a dead beaver found near Red Rock, Okla., in 1978. A comparison of the F. tularensis subsp. holarctica sequence with that of F. tularensis subsp. tularensis strain Schu4 (P. Larsson et al., Nat. Genet. 37:153-159, 2005) highlighted genetic differences that may underlie different pathogenicity phenotypes and the evolutionary relationship between type A and type B strains. Despite extensive DNA sequence identity, the most significant difference between type A and type B isolates is the striking amount of genomic rearrangement that exists between the strains. All but two rearrangements can be attributed to homologous recombination occurring between two prominent insertion elements, ISFtu1 and ISFtu2. Numerous pseudogenes have been found in the genomes and are likely contributors to the difference in virulence between the strains. In contrast, no rearrangements have been observed between the OSU18 genome and the genome of the type B live vaccine strain (LVS), and only 448 polymorphisms have been found within non-transposase-coding sequences whose homologs are intact in OSU18. Nonconservative differences between the two strains likely include the LVS attenuating mutation(s).
By targeting dual active sites of AChE, a series of bis-huperzine B analogues with various lengths of the tether were designed, synthesized, and tested for their inhibition and selectivity. The most potent bis-huperzine B (5g) exhibited 3900-fold increase in AChE inhibition and 930-fold greater in selectivity for AChE vs BuChE than its parent huperzine B.
        
Title: Biodegradation of pesticide pollutants by two kinds of enzymes coexpressed in genetically engineered bacteria Lan WS, Cong J, Jiang H, Gu BG, Qiao Ch L Ref: Bulletin of Environmental Contamination & Toxicology, 75:335, 2005 : PubMed
The unbinding process of E2020 ((R,S)-1-benzyl-4-[(5,6-dimethoxy-1-indanon)-2-yl]-methylpiperidine) leaving from the long active site gorge of Torpedo californica acetylcholinesterase (TcAChE) was studied by using steered molecular dynamics (SMD) simulations on a nanosecond scale with different velocities, and unbinding force profiles were obtained. Different from the unbinding of other AChE inhibitors, such as Huperzine A that undergoes the greatest barrier located at the bottleneck of the gorge, the major resistance preventing E2020 from leaving the gorge is from the peripheral anionic site where E2020 interacts intensively with several aromatic residues (e.g., Tyr70, Tyr121, and Trp279) through its benzene ring and forms a strong direct hydrogen bond and a water bridge with Ser286 via its O24. These interactions cause the largest rupture force, approximately 550 pN. It was found that the rotatable bonds of the piperidine ring to the benzene ring and dimethoxyindanone facilitate E2020 to pass the bottleneck through continuous conformation change by rotating those bonds to avoid serious conflict with Tyr121 and Phe330. The aromatic residues lining the gorge wall are the major components contributing to hydrophobic interactions between E2020 and TcAChE. Remarkably, these aromatic residues, acting in three groups as "sender" and "receiver", compose a "conveyer belt" for E2020 entering and leaving the TcAChE gorge.
Studies were conducted to explore altered substrate utilization and metabolism in GLUT4 null mice. Liver fatty acid synthase mRNA and fatty acid synthesis rates were dramatically increased in GLUT4 null mice compared with control mice and were supported by increased rates of the pentose phosphate pathway oxidative phase and sterol regulatory binding protein mRNA expression. Increased GLUT2 protein content, glucokinase mRNA, and glucose-6-phosphate in GLUT4 null mice may provide substrate for the enhanced fatty acid synthesis. Increased fatty acid synthesis, however, did not lead to hepatic triglyceride accumulation in GLUT4 null mice because of increased hepatic triglyceride secretion rates. GLUT4 null mice rapidly cleared orally administered olive oil, had reduced serum triglyceride concentrations in the fed and the fasted state, and increased skeletal muscle lipoprotein lipase when compared with controls. Oleate oxidation rates were increased in GLUT4 null skeletal muscle in association with mitochondrial hyperplasia/hypertrophy. This study demonstrated that GLUT4 null mice had increased hepatic glucose uptake and conversion into triglyceride for subsequent use by muscle. The ability of GLUT4 null mice to alter hepatic carbohydrate and lipid metabolism to provide proper nutrients for peripheral tissues may explain (in part) their ability to resist diabetes when fed a normal diet.
Rickettsia typhi, the causative agent of murine typhus, is an obligate intracellular bacterium with a life cycle involving both vertebrate and invertebrate hosts. Here we present the complete genome sequence of R. typhi (1,111,496 bp) and compare it to the two published rickettsial genome sequences: R. prowazekii and R. conorii. We identified 877 genes in R. typhi encoding 3 rRNAs, 33 tRNAs, 3 noncoding RNAs, and 838 proteins, 3 of which are frameshifts. In addition, we discovered more than 40 pseudogenes, including the entire cytochrome c oxidase system. The three rickettsial genomes share 775 genes: 23 are found only in R. prowazekii and R. typhi, 15 are found only in R. conorii and R. typhi, and 24 are unique to R. typhi. Although most of the genes are colinear, there is a 35-kb inversion in gene order, which is close to the replication terminus, in R. typhi, compared to R. prowazekii and R. conorii. In addition, we found a 124-kb R. typhi-specific inversion, starting 19 kb from the origin of replication, compared to R. prowazekii and R. conorii. Inversions in this region are also seen in the unpublished genome sequences of R. sibirica and R. rickettsii, indicating that this region is a hot spot for rearrangements. Genome comparisons also revealed a 12-kb insertion in the R. prowazekii genome, relative to R. typhi and R. conorii, which appears to have occurred after the typhus (R. prowazekii and R. typhi) and spotted fever (R. conorii) groups diverged. The three-way comparison allowed further in silico analysis of the SpoT split genes, leading us to propose that the stringent response system is still functional in these rickettsiae.
A large-scale assay was performed by transfecting 29,910 individual cDNA clones derived from human placenta, fetus, and normal liver tissues into human hepatoma cells and 22,926 cDNA clones into mouse NIH 3T3 cells. Based on the results of colony formation in hepatoma cells and foci formation in NIH 3T3 cells, 3,806 cDNA species (8,237 clones) were found to possess the ability of either stimulating or inhibiting cell growth. Among them, 2,836 (6,958 clones) were known genes, 372 (384 clones) were previously unrecognized genes, and 598 (895 clones) were unigenes of uncharacterized structure and function. A comprehensive analysis of the genes and the potential mechanisms for their involvement in the regulation of cell growth is provided. The genes were classified into four categories: I, genes related to the basic cellular mechanism for growth and survival; II, genes related to the cellular microenvironment; III, genes related to host-cell systemic regulation; and IV, genes of miscellaneous function. The extensive growth-regulatory activity of genes with such highly diversified functions suggests that cancer may be related to multiple levels of cellular and systemic controls. The present assay provides a direct genomewide functional screening method. It offers a better understanding of the basic machinery of oncogenesis, including previously undescribed systemic regulatory mechanisms, and also provides a tool for gene discovery with potential clinical applications.
        
Title: Bioremediation of organophosphorus pesticides by surface-expressed carboxylesterase from mosquito on Escherichia coli Zhang J, Lan W, Qiao C, Jiang H, Mulchandani A, Chen W Ref: Biotechnol Prog, 20:1567, 2004 : PubMed
The insecticide resistance-associated esterase, carboxylesterase B1 (CaE B1), from mosquito was used to degrade the organophosphorus compounds. To eradicate the need for enzyme purification and minimize the resistance to mass transport of the substrate and product across the cell membranes, the CaE B1 was displayed on the cell surface of Escherichia coli fused to the C-terminus of the ice nucleation protein (INP). The presence of CaE B1 on the bacterial cell surface was verified by SDS-PAGE, Western blotting analysis, and immunofluorescence microscopy. More than 50% of active CaE B1 is exported across the membrane and anchored onto the cell surface as determined by proteinase accessibility and cell fractionation experiments. In contrast, only a 6% drop in activity for proteinase K-treated cells was detected from E.coli cells containing pET-B1. From the degradation experiment, more than 80% of the malathion was degraded by whole cells containing plasmid pUC-NC-B1. Constitutive expression of CaE B1 on the surface using INPNC resulted in no cell lysis, and the suspended cultures also exhibited good stability. Because of their high biodegradation activity and superior stability, these "live biocatalysts" are promising for detoxification of organophosphorus pesticides.
        
Title: Progress in clinical, pharmacological, chemical and structural biological studies of huperzine A: a drug of traditional chinese medicine origin for the treatment of Alzheimer's disease Jiang H, Luo X, Bai D Ref: Curr Med Chem, 10:2231, 2003 : PubMed
HupA is a potent, reversible AChEI, which crosses the blood-brain barrier smoothly, and shows high specificity for AChE with a prolonged biological half-life. It has been approved as the drug for the treatment of AD in China, and marketed in USA as a dietary supplement. HupA has been the subject of investigations by an ever-increasing number of researchers since 1980's. In the last four years, HupA has been further studied in many aspects such as the chemical synthesis, structural modification, structure-activity relationship, various biological effects, and mechanisms of action. A number of papers dealing with the computational modeling and X-ray crystallographic studies of HupA-AChE complex have also been published. This review represents a comprehensive documentation of the progress in the studies on HupA during the period of 1999-2002.
        
Title: Synthesis and docking studies of alkylene-linked dimers of (-)-huperzine A Jin G, Luo X, He X, Jiang H, Zhang H, Bai D Ref: Arzneimittelforschung, 53:753, 2003 : PubMed
(-)-Huperzine A (5, HupA), an alkaloid isolated from the herb Huperzia serrata, is a potent, selective and reversible acetylcholinesterase (AchE) inhibitor. Based on the hypothesis with respect to two binding sites in the active gorge of AChE and the good example of bis-tacrine, it was predicted from the docking studies of alkylene-linked dimers of HupA that dimers 6 (n = 5, 7, 9) might have good AChE inhibitory activity. Therefore, six dimers with 7-12 methylene units as tethers were thus prepared. It was found that these dimers were less potent than HupA in inhibition of AChE. The difference of the inhibitory potency between these dimers is coincident with the results of the docking studies.
        
Title: How does huperzine A enter and leave the binding gorge of acetylcholinesterase? Steered molecular dynamics simulations Xu Y, Shen J, Luo X, Silman I, Sussman JL, Chen K, Jiang H Ref: Journal of the American Chemical Society, 125:11340, 2003 : PubMed
The entering and leaving processes of Huperzine A (HupA) binding with the long active-site gorge of Torpedo californica acetylcholinesterase (TcAChE) have been investigated by using steered molecular dynamics simulations. The analysis of the force required along the pathway shows that it is easier for HupA to bind to the active site of AChE than to disassociate from it, which for the first time interprets at the atomic level the previous experimental result that unbinding process of HupA is much slower than its binding process to AChE. The direct hydrogen bonds, water bridges, and hydrophobic interactions were analyzed during two steered molecular dynamics (SMD) simulations. Break of the direct hydrogen bond needs a great pulling force. The steric hindrance of bottleneck might be the most important factor to produce the maximal rupture force for HupA to leave the binding site but it has a little effect on the binding process of HupA with AChE. Residue Asp72 forms a lot of water bridges with HupA leaving and entering the AChE binding gorge, acting as a clamp to take out HupA from or put HupA into the active site. The flip of the peptide bond between Gly117 and Gly118 has been detected during both the conventional MD and SMD simulations. The simulation results indicate that this flip phenomenon could be an intrinsic property of AChE and the Gly117-Gly118 peptide bond in both HupA bound and unbound AChE structures tends to adopt the native enzyme structure. At last, in a vacuum the rupture force is increased up to 1500 pN while in water solution the greatest rupture force is about 800 pN, which means water molecules in the binding gorge act as lubricant to facilitate HupA entering or leaving the binding gorge.
Kinetic and structural data are presented on the interaction with Torpedo californica acetylcholinesterase (TcAChE) of (+)-huperzine A, a synthetic enantiomer of the anti-Alzheimer drug, (-)-huperzine A, and of its natural homologue (-)-huperzine B. (+)-Huperzine A and (-)-huperzine B bind to the enzyme with dissociation constants of 4.30 and 0.33 microM, respectively, compared to 0.18 microM for (-)-huperzine A. The X-ray structures of the complexes of (+)-huperzine A and (-)-huperzine B with TcAChE were determined to 2.1 and 2.35 A resolution, respectively, and compared to the previously determined structure of the (-)-huperzine A complex. All three interact with the "anionic" subsite of the active site, primarily through pi-pi stacking and through van der Waals or C-H.pi interactions with Trp84 and Phe330. Since their alpha-pyridone moieties are responsible for their key interactions with the active site via hydrogen bonding, and possibly via C-H.pi interactions, all three maintain similar positions and orientations with respect to it. The carbonyl oxygens of all three appear to repel the carbonyl oxygen of Gly117, thus causing the peptide bond between Gly117 and Gly118 to undergo a peptide flip. As a consequence, the position of the main chain nitrogen of Gly118 in the "oxyanion" hole in the native enzyme becomes occupied by the carbonyl of Gly117. Furthermore, the flipped conformation is stabilized by hydrogen bonding of Gly117O to Gly119N and Ala201N, the other two functional elements of the three-pronged "oxyanion hole" characteristic of cholinesterases. All three inhibitors thus would be expected to abolish hydrolysis of all ester substrates, whether charged or neutral.
        
Title: Isolation of acetylcholinesterase from apoptotic human lung fibroblast cells by antibody affinity chromatography Jin QH, Shi YF, He HY, Ng KK, Jiang H, Yang L, Jiang ZQ, Zhang XJ Ref: Biotechniques, Suppl 92 4:96, 2002 : PubMed
Acetylcholinesterase (AChE; EC3.1.1.7) is well known for its role in the hydrolysis of acetylcholine at cholinergic synapses to terminate neurotransmission. In addition to its synaptic presence, AChE has been found to be in non-cholinergic cells such as hematopoietic and osteogenic cells. We have recently reported that AChE is expressed in various cells undergoing apoptosis. To characterize AChE in apoptotic cells and to investigate the role of AChE expression in apoptosis, we devised a method to purify AChE expressed in apoptotic human lung fibroblast cell line HLF. The isolation of this enzyme is mainly based on inhibitor ligand affinity chromatography using immobilized tacrine. However, this method is only effective in isolating active AChE. Here we employed antibody-based chromatography and found that both active and inactive AChE were present in apoptotic HLF cells. Active AChE was predominantly observed in the nuclei of apoptotic cells, while inactive AChE was mainly present in the cytoplasm. Therefore, our method provides an opportunity to investigate further the role of AChE, especially inactive AChE, in apoptosis.
        
Title: Synthesis and acetylcholinesterase inhibitory activity of huperzine A-E2020 combined compound Zeng F, Jiang H, Zhai Y, Zhang H, Chen K, Ji R Ref: Bioorganic & Medicinal Chemistry Lett, 9:3279, 1999 : PubMed
The synthesis of huperzine-E2020 combined compound (3) has been accomplished and the activities of 3 and the intermediates 12 and 13 to inhibit the activity of acetylcholinesterase have been measured. Conformation analyses and molecular docking studies of E2020 and the eight isomers of 12 were carried out. The results indicated that binding energies of all isomers of 12 with AChE was much lower than E2020 except for isomer RRZ, which might be the reason that the activity of 12 was lower than that of E2020. Interaction pattern of RRZ in AChE was also studied. Both binding energy and interaction pattern shows that the biological activity of RRZ might be higher than that of E2020.
        
Title: Analysis of electronic structures of physostigmine analogs Hu ZJ, Jiang H, Chen JZ, Chen KX, Ji RY Ref: Acta Pharmacol Sin, 19:322, 1998 : PubMed
AIM:
To elucidate the action mechanism and structural prerequisites of 21 physostigmine analogs as acetylcholinesterase inhibitors at the molecular level, and help the rational design of these dihydroindoline inhibitors.
METHODS:
Initial structures of these compounds were built and minimized by SYBYL 6.2 molecular modeling software. Conformations of those molecules with the highest predictive abilities in the Comparative Molecular Field Analysis model were chosen to the semiempirical quantum chemical calculations.
RESULTS:
(1) The highest occupied molecular orbital (HOMO) consisted mainly of the orbitals in phenyl group and N1 atom; the lowest unoccupied molecular orbital (LUMO) of the molecules was contributed from phenyl group and C11 atom. While the HOMO energies did not show any recognizable relationship with activity, the LUMO energies showed a decreased tendency with increasing activity. The active compounds showed lower LUMO energies. (2) The carbon atom (C11) had the most positive net atom charge. The most active compound had the most positive charge on this carbon, but had the lower charges on the carbonyl oxygen (O12) which was the most negative charge atom. (3) The bond order of carbon-oxygen bond (C11-O10) was invariant across the series of the compounds. (4) Compounds with too high or too low total dipole moment had lower activities, while the most active one had a lower molecular polarizability.
CONCLUSION:
A molecular model was suggested to explain the possible mode of action by which these compounds inhibit acetylcholinesterase.
        
Title: Synthesis and acetylcholinesterase inhibitory activity of (+/-)-14- fluorohuperzine A Zeng F, Jiang H, Tang X, Chen K, Ji R Ref: Bioorganic & Medicinal Chemistry Lett, 8:1661, 1998 : PubMed
The synthesis of (+/-)-14-Fluorohuperzine A has been accomplished and the ability of this agent to inhibit acetylcholinesterase has been measured. Taking into account its racemic form, this compound exhibits 62 times less potent activity than natural (-)-huperzine A.