The nucleotide sequence was determined for the genome of Xanthomonas oryzae pathovar oryzae (Xoo) KACC10331, a bacterium that causes bacterial blight in rice (Oryza sativa L.). The genome is comprised of a single, 4 941 439 bp, circular chromosome that is G + C rich (63.7%). The genome includes 4637 open reading frames (ORFs) of which 3340 (72.0%) could be assigned putative function. Orthologs for 80% of the predicted Xoo genes were found in the previously reported X.axonopodis pv. citri (Xac) and X.campestris pv. campestris (Xcc) genomes, but 245 genes apparently specific to Xoo were identified. Xoo genes likely to be associated with pathogenesis include eight with similarity to Xanthomonas avirulence (avr) genes, a set of hypersensitive reaction and pathogenicity (hrp) genes, genes for exopolysaccharide production, and genes encoding extracellular plant cell wall-degrading enzymes. The presence of these genes provides insights into the interactions of this pathogen with its gramineous host.
        
Title: Cellular localization and functional analysis of the protein encoded by the chromosomal virulence gene(acvB) of Agrobacterium tumefaciens Kang HW, Wirawan IG, Kojima M Ref: Biosci Biotechnol Biochem, 58:2024, 1994 : PubMed
A chromosomal virulence gene, acvB, of Agrobacterium tumefaciens [J. Bacteriol., 175, 3208-3212 (1993)] was over-expressed in Escherichia coli. A 47-kDa protein was produced and localized in the periplasmic space of E. coli. Amino acid sequence analysis of its N-terminal demonstrated that a signal peptide of 24 amino acids was cleaved from the pre AcvB protein to produce the mature 47-kDa protein. Western-blot analysis using the antiserum against the AcvB protein detected a 47-kDa protein in the periplasmic space only with strain A208 (acvB+). The amount of AcvB protein synthesized was not increased in strain A208 by induction with acetosyringone (100 microM). There was observed no significant difference in induction by acetosyringone of virB::lacZ, virD::lacZ, and virE::lacZ fusion genes regardless of the presence or absence of the acvB gene. The T-strand (lower strand of T-DNA) was detected in strains A208 as well as B119 (acvB-) which were cultured in induction medium containing acetosyringone. AcvB protein bound to single-stranded DNAs with no apparent sequence specificity. The results suggest that AcvB protein binds to the T-strand in periplasm and mediates the transfer of the T-strand from A. tumefaciens to the host plant cell.
        
Title: Isolation and characterization of a new chromosomal virulence gene of Agrobacterium tumefaciens Wirawan IG, Kang HW, Kojima M Ref: Journal of Bacteriology, 175:3208, 1993 : PubMed
A mutant (strain B119) of Agrobacterium tumefaciens with a chromosomal mutation was isolated by transposon (Tn5) mutagenesis. The mutant exhibited growth rates on L agar and minimal medium (AB) plates similar to those of the parent strain (strain A208 harboring a nopaline-type Ti plasmid). The mutant was avirulent on all host plants tested: Daucus carota, Cucumis sativus, and Kalanchoe diagremontiana. The mutant was not impaired in attachment ability to carrot cells. The mutant had one insertion of Tn5 in its chromosome. The avirulent phenotype of B119 was shown to be due to the Tn5 insertion in the chromosome by the marker exchange technique. A wild-type target chromosomal segment (3.0 kb) which included the site of mutation was cloned and sequenced. Two open reading frames, ORF-1 (468 bp) and ORF-2 (995 bp), were identified in the 3.0-kb DNA segment. Tn5 was inserted in the middle of ORF-2 (acvB gene). Introduction of the acvB gene into the mutant B119 strain complemented the avirulent phenotype of the strain. Homology search found no genes homologous to acvB, although it had some similarity to the open reading frame downstream of the virA gene on the Ti plasmid. Thus, the acvB gene identified in this study seems to be a new chromosomal virulence gene of A. tumefaciens.