The rhesus macaque (Macaca mulatta) is an abundant primate species that diverged from the ancestors of Homo sapiens about 25 million years ago. Because they are genetically and physiologically similar to humans, rhesus monkeys are the most widely used nonhuman primate in basic and applied biomedical research. We determined the genome sequence of an Indian-origin Macaca mulatta female and compared the data with chimpanzees and humans to reveal the structure of ancestral primate genomes and to identify evidence for positive selection and lineage-specific expansions and contractions of gene families. A comparison of sequences from individual animals was used to investigate their underlying genetic diversity. The complete description of the macaque genome blueprint enhances the utility of this animal model for biomedical research and improves our understanding of the basic biology of the species.
        
Title: Molecular cytogenetic analysis of a familial interstitial deletion Xp22.2-22.3 with a highly variable phenotype in female carriers Chocholska S, Rossier E, Barbi G, Kehrer-Sawatzki H Ref: American Journal of Medicine Genet A, 140:604, 2006 : PubMed
We describe a familial interstitial deletion of 7.7-Mb involving Xp22.2-22.3. The deletion was transmitted from an asymptomatic mother to her two children with severe developmental delay, no speech development and autistic behavior. Assessment of the deletion boundaries by FISH and PCR analyses indicated that the deletions encompasses 27 genes. Several of these genes are associated with known disorders, like KAL1 (Kallmann syndrome), steroid sulfatase (STS) (X-linked ichtyosis), and arylsulfatase E (ARSE) (chondrodysplasia punctata). The deletion also includes all four VCX genes (VCX-A, VCX-B1, VCX-B, and VCX-C) and the neuroligin 4 (NLGN4) gene. VCX-A deficiency has been shown previously to be associated with mental retardation and NLGN4 mutations lead to mental retardation in conjunction with autism. Functional deficiency of both MRX genes, VCX-A and NLGN4, are most likely associated with the impaired cognitive development of the patients described here. The phenotype associated with the Xp deletion was highly variable in female carriers and might be attributed to unfavorable X inactivation. However, all the 27 genes included in the deleted interval escape X inactivation and are expressed at variable levels from the normal X chromosome. Thus, the overall X inactivation pattern and inter-individual expression variability of the genes in distal Xp might be determinants of the phenotype associated with the deletion.