Plastic waste poses an ecological challenge(1-3) and enzymatic degradation offers one, potentially green and scalable, route for polyesters waste recycling(4). Poly(ethylene terephthalate) (PET) accounts for 12% of global solid waste(5), and a circular carbon economy for PET is theoretically attainable through rapid enzymatic depolymerization followed by repolymerization or conversion/valorization into other products(6-10). Application of PET hydrolases, however, has been hampered by their lack of robustness to pH and temperature ranges, slow reaction rates and inability to directly use untreated postconsumer plastics(11). Here, we use a structure-based, machine learning algorithm to engineer a robust and active PET hydrolase. Our mutant and scaffold combination (FAST-PETase: functional, active, stable and tolerant PETase) contains five mutations compared to wild-type PETase (N233K/R224Q/S121E from prediction and D186H/R280A from scaffold) and shows superior PET-hydrolytic activity relative to both wild-type and engineered alternatives(12) between 30 and 50 degreesC and a range of pH levels. We demonstrate that untreated, postconsumer-PET from 51 different thermoformed products can all be almost completely degraded by FAST-PETase in 1 week. FAST-PETase can also depolymerize untreated, amorphous portions of a commercial water bottle and an entire thermally pretreated water bottle at 50 C. Finally, we demonstrate a closed-loop PET recycling process by using FAST-PETase and resynthesizing PET from the recovered monomers. Collectively, our results demonstrate a viable route for enzymatic plastic recycling at the industrial scale.
Plastic waste poses an ecological challenge1. While current plastic waste management largely relies on unsustainable, energy-intensive, or even hazardous physicochemical and mechanical processes, enzymatic degradation offers a green and sustainable route for plastic waste recycling2. Poly(ethylene terephthalate) (PET) has been extensively used in packaging and for the manufacture of fabrics and single-used containers, accounting for 12% of global solid waste3. The practical application of PET hydrolases has been hampered by their lack of robustness and the requirement for high processing temperatures. Here, we use a structure-based, deep learning algorithm to engineer an extremely robust and highly active PET hydrolase. Our best resulting mutant (FAST-PETase: Functional, Active, Stable, and Tolerant PETase) exhibits superior PET-hydrolytic activity relative to both wild-type and engineered alternatives, (including a leaf-branch compost cutinase and its mutant4) and possesses enhanced thermostability and pH tolerance. We demonstrate that whole, untreated, post-consumer PET from 51 different plastic products can all be completely degraded by FAST-PETase within one week, and in as little as 24 hours at 50 C. Finally, we demonstrate two paths for closed-loop PET recycling and valorization. First, we re-synthesize virgin PET from the monomers recovered after enzymatic depolymerization. Second, we enable in situ microbially-enabled valorization using a Pseudomonas strain together with FAST-PETase to degrade PET and utilize the evolved monomers as a carbon source for growth and polyhydroxyalkanoate production. Collectively, our results demonstrate the substantial improvements enabled by deep learning and a viable route for enzymatic plastic recycling at the industrial scale.
Activity-based protein profiling (ABPP) has been used extensively to discover and optimize selective inhibitors of enzymes. Here, we show that ABPP can also be implemented to identify the converse-small-molecule enzyme activators. Using a kinetically controlled, fluorescence polarization-ABPP assay, we identify compounds that stimulate the activity of LYPLAL1-a poorly characterized serine hydrolase with complex genetic links to human metabolic traits. We apply ABPP-guided medicinal chemistry to advance a lead into a selective LYPLAL1 activator suitable for use in vivo. Structural simulations coupled to mutational, biochemical and biophysical analyses indicate that this compound increases LYPLAL1's catalytic activity likely by enhancing the efficiency of the catalytic triad charge-relay system. Treatment with this LYPLAL1 activator confers beneficial effects in a mouse model of diet-induced obesity. These findings reveal a new mode of pharmacological regulation for this large enzyme family and suggest that ABPP may aid discovery of activators for additional enzyme classes.
BACKGROUND: The brain is susceptible to methylmercury toxicity, which causes irreversible damage to neurons and glia and the leaf extract Dendropanax morbifera Leveille (DML) has various biological functions in the nervous system. In this study, we examined the effects of DML on mercury-induced proliferating cells and differentiated neuroblasts. METHODS: Dimethylmercury (5 mug/kg) and galantamine (5 mg/kg) was administered intraperitoneally and/or DML (100 mg/kg) was orally to 7-week-old rats every day for 36 days. One hour after the treatment, novel object recognition test was examined. In addition, spatial probe tests were conducted on the 6th day after 5 days of continuous training in the Morris swim maze. Thereafter, the rats were euthanized for immunohistochemical staining analysis with Ki67 and doublecortin and measurement for acetylcholinesterase (AChE) activity. RESULTS: Dimethylmercury-treated rats showed reduced discrimination index in novel object recognition test and took longer to find the platform than did control group. Compared with dimethylmercury treatment alone, supplementation with DML or galatamine significantly ameliorated the reduction of discrimination index and reduced the time spent to find the platform. In addition, the number of platform crossings was lower in the dimethylmercury-treated group than in controls, while the administration of DML or galantamine significantly increased the number of crossings than did dimethylmercury treatment alone. Proliferating cells and differentiated neuroblasts, assessed by Ki67 and doublecortin immunohistochemical staining was significantly decreased in the dimethylmercury treated group versus controls. Supplementation with DML or galantamine significantly increased the number of proliferating cells and differentiated neuroblasts in the dentate gyrus. In addition, treatment with dimethylmercury significantly increased AChE activity in hippocampal homogenates, while treatment with dimethylmercury+DML or dimethylmercury+galantamine significantly ameliorated this increase. CONCLUSIONS: These results suggest that DML may be a functional food that improves dimethylmercury-induced memory impairment and ameliorates dimethylmercury-induced reduction in proliferating cells and differentiated neuroblasts, and demonstrates corresponding activation of AChE activity in the dentate gyrus.
        
Title: Dendropanax morbifera Leveille extract ameliorates cadmium-induced impairment in memory and hippocampal neurogenesis in rats Kim W, Yim HS, Yoo DY, Jung HY, Kim JW, Choi JH, Yoon YS, Kim DW, Hwang IK Ref: BMC Complement Altern Med, 16:452, 2016 : PubMed
BACKGROUND: Cadmium leads to learning and memory impairment. Dendropanax morbifera Leveille stem extract (DMS) reduces cadmium-induced oxidative stress in the hippocampus. We investigated the effects of DMS on cadmium-induced impairments in memory in rats. METHODS: Cadmium (2 mg/kg), with or without DMS (100 mg/kg), was orally administered to 7-week-old Sprague-Dawley rats for 28 days. Galantamine (5 mg/kg), an acetylcholinesterase inhibitor, was intraperitoneally administered as a positive control. A novel-object recognition test was conducted 2 h after the final administration. Cell proliferation and neuroblast differentiation were assessed by immunohistochemistry for Ki67 and doublecortin, respectively. Acetylcholinesterase activity in the synaptosomes of the hippocampus was also measured based on the formation of 5,5'-dithio-bis-acid nitrobenzoic acid. RESULTS: An increase in the preferential exploration time of new objects was observed in both vehicle-treated and cadmium-treated rats. In addition, DMS administration increased cell proliferation and neuroblast differentiation in the dentate gyrus of vehicle-treated and cadmium-treated rats. Acetylcholinesterase activity in the hippocampal synaptosomes was also significantly higher in the DMS-treated group than in the vehicle-treated group. The effect of DMS on cadmium-induced memory impairment and cell proliferation in the hippocampus was comparable to that of galantamine. CONCLUSIONS: These results suggest that DMS ameliorates cadmium-induced memory impairment via increase in cell proliferation, neuroblast differentiation, and acetylcholinesterase activity in the hippocampus. The consumption of DMS may reduce cadmium-induced neurotoxicity in animals or humans.
        
Title: Effects of luteolin on spatial memory, cell proliferation, and neuroblast differentiation in the hippocampal dentate gyrus in a scopolamine-induced amnesia model Yoo DY, Choi JH, Kim W, Nam SM, Jung HY, Kim JH, Won MH, Yoon YS, Hwang IK Ref: Neurol Res, 35:813, 2013 : PubMed
OBJECTIVES: Luteolin, a common flavonoid from many plants, has various pharmacological activities, including a memory-improving effect. In this study, we investigated the effects of luteolin on spatial memory, cell proliferation, and neuroblast differentiation in the hippocampal dentate gyrus in a rat model of scopolamine (SCO)-induced amnesia. METHODS: Scopolamine was subcutaneously administered for 28 days via an Alzet minipump (44 mg/ml delivered at 2.5 mul/h) along with a daily intraperitoneal administration of vehicle (saline) 10 mg/kg luteolin or 5 mg/kg galantamine (GAL) (a control drug for acetylcholinesterase (AChE) inhibitor) for 28 days. RESULTS: The administration of SCO significantly decreased the spatial alteration percentage in the Y-maze test compared to that in the vehicle (saline)-treated group. The administration of luteolin or GAL significantly improved the spatial alteration percentage compared to that in the SCO-treated group. Similarly, the administration of SCO significantly decreased the cell proliferation (Ki67-positive cells) and neuroblast differentiation (doubleocortin-positive cells) in the dentate gyrus. The administration of luteolin or GAL significantly mitigated the SCO-induced reduction of Ki67- and doublecortin-immunoreactive cells in the dentate gyrus. In addition, the administration of luteolin significantly decreased the lipid peroxidation (malondialdehyde (MDA) levels) and increased the brain-derived neurotrophic factor (BDNF) and AChE levels in the hippocampal homogenates compared to the SCO-treated group. CONCLUSION: These results suggest that the luteolin treatment improves the SCO-induced reduction of cell proliferation and neuroblast differentiation in the dentate gyrus. The mechanism underlying the amelioration of SCO-induced amnesia by luteolin may be associated with the increase in BDNF, acetylcholine, and the decrease in lipid peroxidation.
The sexually transmitted insect virus Helicoverpa zea nudivirus 2 (HzNV-2) was determined to have a circular double-stranded DNA genome of 231,621 bp coding for an estimated 113 open reading frames (ORFs). HzNV-2 is most closely related to the nudiviruses, a sister group of the insect baculoviruses. Several putative ORFs that share homology with the baculovirus core genes were identified in the viral genome. However, HzNV-2 lacks several key genetic features of baculoviruses including the late transcriptional regulation factor, LEF-1 and the palindromic hrs, which serve as origins of replication. The HzNV-2 genome was found to code for three ORFs that had significant sequence homology to cellular genes which are not generally found in viral genomes. These included a presumed juvenile hormone esterase gene, a gene coding for a putative zinc-dependent matrix metalloprotease, and a major facilitator superfamily protein gene; all of which are believed to play a role in the cellular proliferation and the tissue hypertrophy observed in the malformation of reproductive organs observed in HzNV-2 infected corn earworm moths, Helicoverpa zea.
        
Title: Draft genome sequence of Methylophaga aminisulfidivorans MP T Han GH, Kim W, Chun J, Kim SW Ref: Journal of Bacteriology, 193:4265, 2011 : PubMed
Methylophaga aminisulfidivorans MP(T) is a restricted facultatively marine methylotrophic bacterium that grows on methanol, methylated amines, dimethyl sulfide, and dimethyl sulfoxide. Here we present the high-quality draft genome sequence of M. aminisulfidivorans MP(T) (KCTC 12909(T) = JCM 14647(T)), consisting of a chromosome (3,092,085 bp) and a plasmid (16,875 bp).
        
Title: Pharmacogenetic Regulation of Acetylcholinesterase Activity in Drosophila Reveals the Regulatory Mechanisms of AChE Inhibitors in Synaptic Plasticity Kim W, Lee D, Choi J, Kim A, Han S, Park K, Kim J, Choi Y, Lee SH, Koh YH Ref: Neurochem Res, 36:879, 2011 : PubMed
We conducted experiments in Drosophila to investigate the consequences of altered acetylcholinesterase (AChE) activity in the nervous system. In ace hypomorphic mutant larvae, the amount of ace mRNA and the activity of AChE both in vivo and in vitro were significantly reduced compared with those of controls. Reduced Ace in Drosophila larvae resulted in significant down-regulation of branch length and the number of boutons in Type 1 glutamatergic neuromuscular junctions (NMJs). These defects in ace hypomorphic mutant larvae were suppressed when Musca domestica AChE was transgenically expressed. Because AChE inhibitors are utilized for medications for Alzheimer's disease, we investigated whether pharmacological inhibition of AChE activity induced any synaptic defects. We found that controls exposed to a sublethal dose of DDVP phenocopied the synaptic structural defects of the ace hypomorphic mutant. These results suggest that down-regulation of AChE activity, regardless of whether it is due to genetic or pharmacological manipulations, results in altered synaptic architecture. Our study suggests that exposure to AChE inhibitors for 6-12 months may induce altered synaptic architectures in human brains with Alzheimer's diseases, similar to those reported here. These changes may underlie or contribute to the loss of efficacy of AChE inhibitors after prolonged treatment.
        
Title: Biochemical characterization of digestive enzymes in the black soldier fly, Hermetia illucens (Diptera: Stratiomyidae) Kim W, Bae S, Park K, Lee S, Choi Y, Han S, Koh Youngho Ref: Journal of Asia-Pacific Entomology, 14:11, 2011 : PubMed
The black soldier fly, Hermetia illucens, is beneficial because its larvae feed on organic materials derived from plants, animals and humans and promote the recycling of food waste and organic materials. We investigated the biochemical properties of digestive enzymes released from the salivary gland and gut of the black soldier fly. Because the gut extracts of the black soldier fly larvae had high amylase, lipase and protease activities, we suggested that the black soldier fly might belong to the polyphagous insect group. In addition, a strong trypsin-like protease activity was observed in the gut extracts of the black soldier fly larvae. Higher activities of leucine arylamidase, +/--galactosidase, beta-galactosidase, +/--mannosidase and +/--fucosidase were observed from the gut extracts of the black soldier fly larvae compared with those of house fly larvae. These findings may explain previous reports that the black soldier fly larvae can digest food wastes and organic materials more efficiently than any other known species of fly.
        
Title: Effects of a new synthetic butyrylcholinesterase inhibitor, HBU-39, on cell proliferation and neuroblast differentiation in the hippocampal dentate gyrus in a scopolamine-induced amnesia animal model Yoo DY, Woo YJ, Kim W, Nam SM, Lee BH, Yeun GH, Yoon YS, Won MH, Park JH, Hwang IK Ref: Neurochem Int, 59:722, 2011 : PubMed
In this study, we synthesized [1-(4-(benzo[d][1,3]dioxol-5-ylmethyl)piperazin-1-yl)-5-(1,2-dithiolan-3-yl)penta n-1-one, HBU-39], a (alpha)-lipoic acid derivative, and found this compound strongly inhibited butyrylcholinesterase (BuChE) in an in vitro experiment. We also examined the effects of HBU-39 on cell proliferation and neuroblast differentiation using the specific markers Ki67 and doublecortin (DCX), respectively, in the hippocampal dentate gyrus of a rat model of scopolamine-induced amnesia. For this, scopolamine was subcutaneously administered for 28 days by an ALzet osmotic minipump (44 mg/mL delivered at 2.5 muL/h). HBU-39 (1mg/kg per day) and galantamine (an acetylcholinesterase inhibitor used as a control; 5mg/kg per day) were intraperitoneally administered for 28 days. The administration of scopolamine significantly decreased the mean number of Ki67- and DCX-immunoreactive cells in the dentate gyrus. However, treatment with both HBU-39 and galantamine significantly ameliorated the reductions in cell proliferation and neuroblast differentiation. In particular, the mean number of Ki67- and DCX-immunoreactive cells was prominently abundant in the HBU-treated group compared to that in the galantamine-treated group. These results suggest that the BuChE inhibitor, HBU-39, can ameliorate the scopolamine-induced reductions of cell proliferation and neuroblast differentiation, and HBU-39 may be applicable to amnesia patients to promote memory functions.
We report an improved draft nucleotide sequence of the 2.3-gigabase genome of maize, an important crop plant and model for biological research. Over 32,000 genes were predicted, of which 99.8% were placed on reference chromosomes. Nearly 85% of the genome is composed of hundreds of families of transposable elements, dispersed nonuniformly across the genome. These were responsible for the capture and amplification of numerous gene fragments and affect the composition, sizes, and positions of centromeres. We also report on the correlation of methylation-poor regions with Mu transposon insertions and recombination, and copy number variants with insertions and/or deletions, as well as how uneven gene losses between duplicated regions were involved in returning an ancient allotetraploid to a genetically diploid state. These analyses inform and set the stage for further investigations to improve our understanding of the domestication and agricultural improvements of maize.
        
Title: The role of incretins in glucose homeostasis and diabetes treatment Kim W, Egan JM Ref: Pharmacol Rev, 60:470, 2008 : PubMed
Incretins are gut hormones that are secreted from enteroendocrine cells into the blood within minutes after eating. One of their many physiological roles is to regulate the amount of insulin that is secreted after eating. In this manner, as well as others to be described in this review, their final common raison d'etre is to aid in disposal of the products of digestion. There are two incretins, known as glucose-dependent insulinotropic peptide (GIP) and glucagon-like peptide-1 (GLP-1), that share many common actions in the pancreas but have distinct actions outside of the pancreas. Both incretins are rapidly deactivated by an enzyme called dipeptidyl peptidase 4 (DPP4). A lack of secretion of incretins or an increase in their clearance are not pathogenic factors in diabetes. However, in type 2 diabetes (T2DM), GIP no longer modulates glucose-dependent insulin secretion, even at supraphysiological (pharmacological) plasma levels, and therefore GIP incompetence is detrimental to beta-cell function, especially after eating. GLP-1, on the other hand, is still insulinotropic in T2DM, and this has led to the development of compounds that activate the GLP-1 receptor with a view to improving insulin secretion. Since 2005, two new classes of drugs based on incretin action have been approved for lowering blood glucose levels in T2DM: an incretin mimetic (exenatide, which is a potent long-acting agonist of the GLP-1 receptor) and an incretin enhancer (sitagliptin, which is a DPP4 inhibitor). Exenatide is injected subcutaneously twice daily and its use leads to lower blood glucose and higher insulin levels, especially in the fed state. There is glucose-dependency to its insulin secretory capacity, making it unlikely to cause low blood sugars (hypoglycemia). DPP4 inhibitors are orally active and they increase endogenous blood levels of active incretins, thus leading to prolonged incretin action. The elevated levels of GLP-1 are thought to be the mechanism underlying their blood glucose-lowering effects.
        
Title: Distinct retrieval and retention mechanisms are required for the quality control of endoplasmic reticulum protein folding Vashist S, Kim W, Belden WJ, Spear ED, Barlowe C, Ng DT Ref: Journal of Cell Biology, 155:355, 2001 : PubMed
Proteins destined for the secretory pathway must first fold and assemble in the lumen of endoplasmic reticulum (ER). The pathway maintains a quality control mechanism to assure that aberrantly processed proteins are not delivered to their sites of function. As part of this mechanism, misfolded proteins are returned to the cytosol via the ER protein translocation pore where they are ubiquitinated and degraded by the 26S proteasome. Previously, little was known regarding the recognition and targeting of proteins before degradation. By tracking the fate of several mutant proteins subject to quality control, we demonstrate the existence of two distinct sorting mechanisms. In the ER, substrates are either sorted for retention in the ER or are transported to the Golgi apparatus via COPII-coated vesicles. Proteins transported to the Golgi are retrieved to the ER via the retrograde transport system. Ultimately, both retained and retrieved proteins converge at a common machinery at the ER for degradation. Furthermore, we report the identification of a gene playing a novel role specific to the retrieval pathway. The gene, BST1, is required for the transport of misfolded proteins to the Golgi, although dispensable for the transport of many normal cargo proteins.