Ricin, a highly lethal plant-derived toxin, is a potential biological threat agent due to its high availability, ease of production and the lack of approved medical countermeasures for post-exposure treatment. To date, no specific ricin receptors were identified. Here we show for the first time, that the low density lipoprotein receptor-related protein-1 (LRP1) is a major target molecule for binding of ricin. Pretreating HEK293 acetylcholinesterase-producer cells with either anti-LRP1 antibodies or with Receptor-Associated Protein (a natural LRP1 antagonist), or using siRNA to knock-down LRP1 expression resulted in a marked reduction in their sensitivity towards ricin. Binding assays further demonstrated that ricin bound exclusively to the cluster II binding domain of LRP1, via the ricin B subunit. Ricin binding to the cluster II binding domain of LRP1 was significantly reduced by an anti-ricin monoclonal antibody, which confers high-level protection to ricin pulmonary-exposed mice. Finally, we tested the contribution of LRP1 receptor to ricin intoxication of lung cells derived from mice. Treating these cells with anti-LRP1 antibody prior to ricin exposure, prevented their intoxication. Taken together, our findings clearly demonstrate that the LRP1 receptor plays an important role in ricin-induced pulmonary intoxications.
Ricin is one of the most potent and lethal toxins known to which there is no available antidote. Currently, the most promising therapy is based on neutralizing antibodies elicited by active vaccination or given passively. Here, detailed protocols are provided for the production of two ricin holotoxin-based vaccines: monomerized subunit-based vaccine, and a formaldehyde-based ricin toxoid vaccine. Both vaccines were found to be stable with no toxic activity reversion even after long-term storage while eliciting high anti-ricin antibody titers possessing a potent neutralizing activity. The use of these vaccines is highly suitable for both the production of sera that can be used in passive protection experiments and immunization aimed to isolate potent anti-ricin monoclonal antibodies.
        
Title: Next generation OP-bioscavengers: a circulatory long-lived 4-PEG hypolysine mutant of F338A-HuAChE with optimal pharmacokinetics and pseudo-catalytic characteristics Kronman C, Cohen O, Mazor O, Ordentlich A, Raveh L, Velan B, Shafferman A Ref: Chemico-Biological Interactions, 187:253, 2010 : PubMed
We have shown previously that conjugation of polyethylene glycol (PEG) chains to recombinant human acetylcholinesterase (rHuAChE) results in the extension of its residence time in the circulation of mice and monkeys [1,2]. By profiling the pharmacokinetic behavior of an array of well-defined hypolysine human mutant AChE molecules following PEGylation, we now determine that the duration of these enzyme forms in the circulation of rhesus macaques correlates with their number of appended PEG moieties, and is influenced by the actual location of the PEG chains at the molecule surface, as well. These findings, which concur with those we have previously established in mice, indicate that a common set of rules dictates the circulatory fate of PEGylated HuAChEs in rodents and non-human primates. In addition to its effect on circulatory residence, PEGylation reduces the ability of the rHuAChE bioscavenger to elicit an immune response in the heterologous mouse animal system. Thus, an inverse relationship between anti-AChE antibody production and PEG loading was observed following repeated administration of the different PEGylated hypolysine human AChEs to mice. We note however, that in rhesus macaques, the essentially homologous (human) AChE does not induce specific anti-AChE antibodies after repeated administration of high doses of the enzyme in its PEGylated form, and even in its non-PEGylated form. Taken together, these findings indicate that PEG acts by veiling enzyme-related epitopes, which would otherwise interact with host circulatory elimination pathways and immune system. The barring of such interactions by obstructive PEGs, confers the enzyme molecule with both extended circulatory residence and mitigated immunogenic properties. Further modulation by incorporation of the F338A mutation into the PEGylated hypolysine rHuAChE enzyme mold, resulted in the generation of an OP-bioscavenger that displayed reduced aging rates and could effectively protect mice against repeated exposure to CW agents. This selected 4-PEG F338A-AChE can serve as a paradigm for new generation OP-bioscavengers, specifically tailored for prophylactic treatment against toxic OP-agents.
The high reactivity of cholinesterases (ChEs) toward organophosphorus (OP) compounds has led to propose recombinant ChEs as bioscavengers of nerve agents. The bioscavenging potential of recombinant ChEs can be enhanced by conjugation of polyethylene glycol (PEG) moieties, to extend their circulatory residence. However, the ability of exogenously administered ChEs to confer long-term protection against repeated exposures to nerve agents is still limited due to the aging process, whereby organophosphate-ChE adducts undergo irreversible dealkylation, which precludes oxime-mediated reactivation of the enzyme. To generate an optimal acetylcholinesterase (AChE)-based OP bioscavenger, the F338A mutation, known to decelerate the rate of aging of AChE-OP conjugates, was incorporated into polyethylene glycol-conjugated (PEGylated) human AChE. The PEGylated F338A-AChE displayed unaltered rates of hydrolysis, inhibition, phosphylation, and reactivation and could effectively protect mice against exposure to soman (pinacolylmethyl phosphonofluoridate), sarin (O-isopropyl methylphosphonofluoridate), or O-ethyl-S-(2-isopropylaminoethyl) methylphosphonothioate (VX). Unlike PEGylated wild-type (WT)-AChE, the PEGylated F338A-AChE exhibits significantly reduced aging rates after soman inhibition and can be efficiently reactivated by the 1-[[[4(aminocarbonyl)-pyridinio]methoxy]methyl]-2(hydroxyimino)methyl]pyridinium dichloride (HI-6) oxime, both in vitro and in vivo. Accordingly, oxime administration to PEG-F338A-AChE-pretreated mice enabled them to withstand repeated soman exposure (5.4 and 4 LD(50)/dose), whereas same regime treatment of non-PEGylated F338A-AChE- or PEGylated WT-AChE-pretreated mice failed to protect against the second challenge, due to rapid clearance or irreversible aging of the latter enzymes. Thus, judicious incorporation of selected mutations into the AChE mold in conjunction with its chemical modification provides means to engineer an optimal ChE-based OP bioscavenger in terms of circulatory longevity, resistance to aging, and reduced doses required for protection, even against repeated exposures to nerve agents, such as soman.
Functional architecture of the AChE active center appears to be characterized by both structural "rigidity", necessary to stabilize the catalytic triad as well as by flexibility in accommodating the different, high affinity AChE ligands. These seemingly conflicting structural properties of the active center are demonstrated through combination of structural methods with kinetic studies of the enzyme and its mutant derivatives with plethora of structurally diverse ligands and in particular with series of stereoselective covalent and noncovalent AChE ligands. Thus, steric perturbation of the acyl pocket precipitates in a pronounced stereoselectivity toward methylphosphonates by disrupting the stabilizing environment of the catalytic histidine rather than through steric exclusion demonstrating the functional importance of the "rigid" environment of the catalytic machinery. The acyl pocket, the cation-binding subsite (Trp86) and the peripheral anionic subsite were also found to be directly involved in HuAChE stereoselectivity toward charged chiral phosphonates, operating through differential positioning of the ligand cationic moiety within the active center. Residue Trp86 is also a part of the "hydrophobic patch" which seems flexible enough to accommodate the structurally diverse ligands like tacrine, galanthamine and the two diastereomers of huperzine A. Also, we have recently discovered further aspects of the role of both the unique structure and the flexibility of the "hydrophobic patch" in determining the reactivity and stereoselectivity of HuAChE toward certain carbamates including analogs of physostigmine. In these cases the ligands are accommodated mostly through hydrophobic interactions and their stereoselectivity delineates precisely the steric limits of the pocket. Hence, the HuAChE stereoselectivity provides a sensitive tool in the in depth exploration of the functional architecture of the active center. These studies suggest that the combination of "rigidity" and flexibility within the HuAChE gorge are an essential element of its molecular design.
        
Title: Controlled concealment of exposed clearance and immunogenic domains by site-specific polyethylene glycol attachment to acetylcholinesterase hypolysine mutants Cohen O, Kronman C, Lazar A, Velan B, Shafferman A Ref: Journal of Biological Chemistry, 282:35491, 2007 : PubMed
Cholinesterases are efficient scavengers of organophosphates and are currently being developed as drugs for treatment against poisoning by such compounds. Recombinant ChE bioscavengers have very short circular longevity, a limitation that can be overcome by complex post-translation manipulations or by chemical modification such as polyethylene glycol conjugation. Series of multiple Lys-Ala mutants of human acetylcholinesterase were prepared allowing the generation of homogenous and well defined polyethylene-glycol conjugated AChEs with either one, two, three, four, or five appended polyethylene glycol (PEG) moieties/molecule. The rank order of circulatory longevity of these molecules was dependent on the number of PEG appendages up to a certain threshold: 5 = 4 > 3 > 2 > 1 > 0. Hypolysine acetylcholinesterases (AChEs) carrying the same number of PEGs, and therefore with identical masses, allowed us to demonstrate that circulatory longevity correlates with the predicted extent of concealment of the AChE surface. Furthermore, circulatory profiles of high number and low number PEG-AChEs differing in their sialic acid contents demonstrate a direct relationship between PEG loading and the effective seclusion of AChE from the hepatic asialoglycoprotein receptor clearance system. Finally, an inverse relationship is found between the extent of PEG loading and the ability of the human acetylcholinesterase to elicit specific anti-HuAChE antibodies. In conclusion, these findings suggest that for the extension of circulatory longevity, protein surface domain concealment exerted by polyethylene glycol attachment is at least as important as its effect on size enlargement and highlights the role of PEG attachment in masking interactions between biomolecules and their cognate receptors.
        
Title: Polyethylene-glycol conjugated recombinant human acetylcholinesterase serves as an efficacious bioscavenger against soman intoxication Kronman C, Cohen O, Raveh L, Mazor O, Ordentlich A, Shafferman A Ref: Toxicology, 233:40, 2007 : PubMed
Extensive pharmacokinetic studies in both mice and rhesus macaques, with biochemically well defined forms of native and recombinant AChEs from bovine, rhesus and human origin, allowed us to determine an hierarchical pattern by which post-translation-related factors and specific amino-acid epitopes govern the pharmacokinetic performance of the enzyme molecule. In parallel, we demonstrated that controlled conjugation of polyethylene-glycol (PEG) side-chains to lysine residues of rHuAChE also results in the generation of active enzyme with improved pharmacokinetic performance. Here, we show that equally efficient extension of circulatory residence can be achieved by specific conditions of PEGylation, regardless of the post-translation-modification state of the enzyme. The masking effect of PEGylation, which is responsible for extending circulatory lifetime, also contributes to the elimination of immunological responses following repeated administration of AChE. Finally, in vivo protection studies in mice allowed us to determine that the PEGylated AChE protects the animal from a high lethal dose (2.5 LD(50)) of soman. On a mole basis, both the recombinant AChE and its PEGylated form provide higher levels of protection against soman poisoning than the native serum-derived HuBChE. The findings that circulatory long-lived PEGylated AChE can confer superior protection to mice against OP-compound poisoning while exhibiting reduced immunogenicity, suggest that this chemically modified version of rHuAChE may serve as a highly effective bioscavenger for prophylactic treatment against OP-poisoning.
        
Title: Comparison of polyethylene glycol-conjugated recombinant human acetylcholinesterase and serum human butyrylcholinesterase as bioscavengers of organophosphate compounds Cohen O, Kronman C, Raveh L, Mazor O, Ordentlich A, Shafferman A Ref: Molecular Pharmacology, 70:1121, 2006 : PubMed
Comparative protection studies in mice demonstrate that on a molar basis, recombinant human acetylcholinesterase (rHuAChE) confers higher levels of protection than native human butyrylcholinesterase (HuBChE) against organophosphate (OP) compound intoxication. For example, mice challenged with 2.5 LD50 of O-isopropyl methylphosphonofluoridate (sarin), pinacolylmethyl phosphonofluoridate (soman), and O-ethyl-S-(2-isopropylaminoethyl) methylphosphonothiolate (VX) after treatment with equimolar amounts of the two cholinesterases displayed 80, 100, and 100% survival, respectively, when pre-treatment was carried out with rHuAChE and 0, 20, and 60% survival, respectively, when pretreatment was carried out with HuBChE. Kinetic studies and active site titration analyses of the tested OP compounds with acetylcholinesterases (AChEs) and butyrylcholinesterases (BChEs) from different mammalian species demonstrate that the superior in vivo efficacy of acetyl-cholinesterases is in accordance with the higher stereoselectivity of AChE versus BChE toward the toxic enantiomers comprising the racemic mixtures of the various OP agents. In addition, we show that polyethylene glycol-conjugated (PEGy-lated) rHuAChE, which is characterized by a significantly extended circulatory residence both in mice and monkeys ( Biochem J 357: 795-802, 2001 ; Biochem J 378: 117-128, 2004 ), retains full reactivity toward OP compounds both in vitro and in vivo and provides a higher level of protection to mice against OP poisoning, compared with native serum-derived HuBChE. Indeed, PEGylated rHuAChE also confers superior prophylactic protection when administered intravenously or intramuscularly over 20 h before exposure of mice to a lethal dose of VX (1.3-1.5 LD50). These findings together with the observations that the PEGylated rHuAChE exhibits unaltered biodistribution and high bioavailability present a case for using PEGylated rHuAChE as a very efficacious bioscavenger of OP agents.
        
Title: Lessons from functional analysis of AChE covalent and noncovalent inhibitors for design of AD therapeutic agents Barak D, Ordentlich A, Kaplan D, Kronman C, Velan B, Shafferman A Ref: Chemico-Biological Interactions, 157-158:219, 2005 : PubMed
Determination of the 3D-structure of acetylcholinesterase (AChE) of Torpedo californica over a decade ago, and more recently that of human enzyme together with extensive targeted mutagenesis of the mammalian AChEs led to a fine mapping of the multiple functional domains within the active center of the enzyme. Many of the contributions of this active center architecture to accommodation of noncovalent ligands could be deduced from the X-ray structures of the corresponding HuAChE complexes. Yet, Michaelis complexes leading to transient covalent adducts are not amenable to structural analysis. Since the rates of formation of the covalent adducts depend predominantly on the stabilities of the corresponding Michaelis complexes, it is essential to characterize the specific interactions contributing to stabilization of these complexes. Functional analysis of interactions with HuAChE enzymes allows for such characterization for carbamates, like pyridostigmine or rivastigmine, much in the same way as that for the noncovalent therapeutic ligands nivalin or aricept. In fact, the observed differences between the affinities toward carbamates and the noncovalent ligands seem to result from specific structural characteristics of the inhibitors rather than from the decomposition path of the particular complex. Replacements at the cation binding site (Trp86), hydrogen bond network (Glu202, Tyr133, Glu450), and hydrophobic pocket result in similar effects for the covalent as well as for the noncovalent inhibitors. Also, while the effects of perturbing the aromatic trapping of the catalytic His447 for pyridostigmine and nivalin were analogous to those for the substrate, the corresponding effects for rivastigmine and aricept were quite different. Thus, elucidation of the functional architecture of the HuAChE active center is bound to be of considerable utility in the current effort to design novel covalent AChE inhibitors as therapeutics for Alzheimer's disease (AD).
Primates are characterized by a paucity of soluble acetylcholinesterase (AChE) in the circulation at the adult stage, where the predominant circulating cholinesterase is butyrylcholinesterase. In recent years, we subjected recombinant human and bovine acetylcholinesterase to extensive pharmacokinetic studies in mice, an animal system which also displays very low levels of circulating AChE. In this system, a post-translation-related hierarchical pattern governing circulatory residence through AChE sialylation, subunit tetramerization and glycan loading was elucidated. Based on these studies, coordinated modulation of the sialic acid contents, state of subunit assembly and number of glycans allowed us to generate human or bovine AChE forms which reside in the circulation of mice for long periods of time, mimicking the pharmacokinetic behavior of native serum-derived cholinesterases. However, extension of the pharmacokinetic studies to primates, revealed an additional element, which affects circulatory residence of AChEs in this animal system. Unlike in the case of bovine AChE, optimization of subunit assembly and glycan loading of the primate versions of AChE (human or rhesus) did not increase their circulatory lifetime in rhesus macaques. This differential pharmacokinetic behavior of bovine and primate AChEs in macaques appears to be related to the 35 diverging bovine/primate AChE amino acids which are clustered within three defined domains at the enzyme surface, and thereby may facilitate the specific removal of "self" or "self-like" cholinesterases from the circulation of monkeys and thus provide an explanation for the absence of soluble AChE in the circulation of primates.
The reactivity of human acetylcholinesterase (HuAChE) toward the chemical warfare agent VX [O-ethyl S-[2-(diisopropylamino)ethyl] methyl-phosphonothioate] and its stereoselectivity toward the P(S)-enantiomer were investigated by examining the reactivity of HuAChE and its mutant derivatives toward purified enantiomers of VX and its noncharged isostere nc-VX [O-ethyl S-(3-isopropyl-4-methyl-pentyl) methylphosphonothioate]. Stereoselectivity of the wild-type HuAChE toward VX(S) is manifested by a 115-fold higher bimolecular rate constant (1.4 x 10(8) min(-1) M(-1)) as compared to that of VX(R). HuAChE was also 12,500-fold more reactive toward VX(S) than toward nc-VX(S), demonstrating the significance of the polar interactions of the ammonium substituent to their overall affinity toward VX. Indeed, substitution of the cation-binding subsite residue Trp86 by alanine resulted in a decrease of three orders of magnitude in HuAChE reactivity toward both VX enantiomers, with only a marginal effect on the reactivity toward the enantiomers of nc-VX. These results demonstrate that accommodation of the charged moieties of both VX enantiomers depends predominantly on interactions with the aromatic moiety of Trp86. Yet, these interactions seem to limit the stereoselectivity toward the P(S)-enantiomer, which for charged methylphosphonates is much lower than for the noncharged analogs, like sarin or soman. Marked decrease in stereoselectivity toward VX(S) was observed following replacements of Phe295 at the acyl pocket (F295A and F295A/F297A). Replacement of the peripheral anionic site (PAS) residue Asp74 by asparagine (D74N) practically abolished stereoselectivity toward VX(S) (a 130-fold decrease), while substitution which retained the negative charge at position 74 (D74E) had no effect. The results from kinetic studies and molecular simulations suggest that the differential reactivity toward the VX enantiomers originates predominantly from a different orientation of the charged leaving group with respect to residue Asp74. Such different orientations of the charged leaving group in the HuAChE adducts of the VX enantiomers seem to be a consequence of intramolecular interactions with the bulky phosphorus alkoxy group.
Functional analysis of the HuAChE active center architecture revealed that accommodation of structurally diverse substrates and other ligands is achieved through interactions with specific subsites such as the acyl pocket, cation binding site, hydrophobic site or the oxyanion hole. Recent studies have begun to unravel the role of this active center architecture in maintaining the optimal catalytic facility of the enzyme through inducing proper alignment of the catalytic triad. The exact positioning of the catalytic glutamate (Glu334) seems to be determined by a hydrogen bond network including several polar residues and water molecules. Disruption of this network by replacement of Ser229 by alanine is thought to remove the Glu334 carboxylate from the vicinity of His447 abolishing catalytic activity. The proper orientation of the catalytic histidine side chain is maintained by these polar interactions as well as through "aromatic trapping" by residues lining the HuAChE active center gorge. Thus, replacement of aromatic residues in the vicinity of His447, as in the F295A/F338A or in the Y72N/Y124Q/W286A/F295L/F297V/Y337A (hexamutant which mimicks the aromatic lining of HuBChE) enzymes, resulted in a dramatic decrease in catalytic activity, which was proposed to originate from catalytically nonproductive mobility of His447. Yet, HuBChE is catalytically efficient indicating that "aromatic trapping" is not the only way to conformationally stabilize the His447 side chain. A possible restriction of this mobility in a series of F295X/F338A HuAChEs was examined in silico followed by site-directed mutagenesis. Both simulations and reactivities of the actual F295X/F338A enzymes, carrying various aliphatic residues at position 295, indicate that of the bulky amino acids, like leucine or isoleucine, only methionine was capable of maintaining the catalytically viable conformation of His447. The F295M/F338A HuAChE was only two-fold less reactive than the F338A enzyme toward acetylthiocholine, and exhibited wild type-like reactivity toward covalent modifiers of the catalytic Ser203. The findings are consistent with the notion that different combinations of steric interference and specific polar interactions serve to maintain the position of His447 and thereby the high efficiency of the catalytic machinery. The two seemingly conflicting demands on the architecture of the active center-flexible accommodation of substrate and optimal juxtaposition of residues of the catalytic triad, demonstrate the truly amazing molecular design of the AChE active center.
Title: Amino acid domains control the circulatory residence time of primate acetylcholinesterases in rhesus macaques (Macaca mulatta) Cohen O, Kronman C, Velan B, Shafferman A Ref: Biochemical Journal, 378:117, 2004 : PubMed
An array of 13 biochemically well defined molecular forms of bovine, human and newly cloned rhesus macaque (Macaca mulatta) AChEs (acetylcholinesterases) differing in glycosylation and subunit assembly status were subjected to comparative pharmacokinetic studies in mice and rhesus macaques. The circulatory lifetimes of recombinant bovine, macaque and human AChEs in mice were governed by previously determined hierarchical rules; the longest circulatory residence time was obtained when AChE was fully sialylated and tetramerized [Kronman, Chitlaru, Elhanany, Velan and Shafferman (2000) J. Biol. Chem. 275, 29488-29502; Chitlaru, Kronman, Velan and Shafferman (2001) Biochem. J. 354, 613-625]. In rhesus macaques, bovine molecular forms still obeyed the same hierarchical rules, whereas primate AChEs showed significant deviation from this behaviour. Residence times of human and rhesus AChEs were effectively extended by extensive sialylation, but subunit tetramerization and N-glycan addition had a marginal effect on their circulatory longevity in macaques. It appears that the major factor responsible for the differential pharmacokinetics of bovine and primate AChEs in macaques is related to differences in primary structure, suggesting the existence of a specific mechanism for the circulatory clearance of primate AChEs in rhesus macaques. The 35 amino acids that differ between bovine and primate AChEs are clustered within three defined domains, all located at the enzyme surface, and may therefore mediate the facilitated removal of primate cholinesterases specifically from the circulation of monkeys. These surface domains can be effectively masked by poly(ethylene glycol) appendage, resulting in the generation of chemically modified human and macaque AChEs that reside in the circulation for extraordinarily long periods of time (mean residence time of 10000 min). This extended residence time is similar to that displayed by native macaque butyrylcholinesterase (9950 min), which is the prevalent cholinesterase form in the circulation of adult macaques.
        
Title: Generation of pharmacokinetically improved recombinant human acetylcholinesterase by polyethylene glycol modification. Cohen O, Kronman C, Chitlaru T, Ordentlich A, Velan B, Shafferman A Ref: Cholinergic Mechanisms, CRC Press, :519, 2004 : PubMed
Replacement of both the acyl pocket residue Phe295 as well as residue Phe338, adjacent to the catalytic His447 in human acetylcholinesterase (HuAChE), resulted in a 680-fold decline in catalytic activity due to conformational destabilization of the histidine side chain [Barak et al. (2002) Biochemistry 41, 8245]. A possible restriction of this catalytically nonproductive mobility of His447 in a series of F295X/F338A HuAChEs was examined in silico followed by site-directed mutagenesis. Simulations suggested that of the 12 aliphatic residues substituted at position 295, including hydrophobic and polar amino acids, only methionine was capable of maintaining the catalytically viable conformation of His447. Examination of the reactivities of the actual F295X/F338A HuAChEs showed that indeed the F295M/F338A enzyme was only 2-fold less reactive than the F338A mutant toward acetylthiocholine, while enzymes substituted by the similarly bulky residues leucine and isoleucine were catalytically impaired. Furthermore, only the F295M/F338A enzyme exhibited wild-type-like reactivity toward covalent modifiers of the catalytic Ser203 including the methylphosphonate soman and transition state analogue m-(N,N,N-trimethylammonio)trifluoroacetophenone (TMTFA), as well as a facile dealkylation of the F295M/F338A-soman adduct. A different behavior was observed for bulkier ligands which introduce a deformation in the acyl pocket, and therefore their activity seems only marginally affected by the positioning of His447. The findings emphasize the importance of the precise positioning of His447 for catalysis and indicate that, in the absence of aromatic "trapping", restriction of the histidine mobility in F295X/F338A HuAChEs requires a combination of steric interference and a specific polar interaction. The results also underscore the role of the acyl pocket subsite of cholinesterases in maintaining the catalytically viable conformation of the catalytic histidine.
        
Title: Attempts to engineer an enzyme mimic of butyrylcholinesterase by substitution of the six divergent aromatic amino acids in the active center of acetylcholinesterase. Kaplan D, Ordentlich A, Barak D, Ariel N, Kronman C, Baruch V, Shafferman A Ref: Cholinergic Mechanisms, CRC Press, :601, 2004 : PubMed
Title: Some basic rules governing oligosaccharide-dependent circulatory residence of glycoproteins are revealed by MALDI-TOF mapping of the multiple N-glycans associated with recombinant bovine acetylcholinesterase. Kronman C, Chitlaru T, Seliger N, Lazar S, Lazar A, Zilberstein L, Velan B, Shafferman A Ref: Cholinergic Mechanisms, CRC Press, :613, 2004 : PubMed
Title: Poster (21) Analysis of acetylcholinesterase adducts of alzheimer's drugs Ordentlich A, Kronman C, Barak D, Ariel N, Kaplan D, Velan B, Shafferman A Ref: In: Cholinesterases in the Second Millennium: Biomolecular and Pathological Aspects, (Inestrosa NC, Campos EO) P. Universidad Catolica de Chile-FONDAP Biomedicina:332, 2004 : PubMed
The origins of human acetylcholinesterase (HuAChE) reactivity toward the lethal chemical warfare agent O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate (VX) and its stereoselectivity toward the P(S)-VX enantiomer (VX(S)) were investigated by examining the reactivity of HuAChE and its mutant derivatives toward purified enantiomers of VX and its noncharged isostere O-ethyl S-(3-isopropyl-4-methylpentyl) methylphosphonothioate (nc-VX) as well as echothiophate and its noncharged analogue. Reactivity of wild-type HuAChE toward VX(S) was 115-fold higher than that toward VX(R), with bimolecular rate constants of 1.4 x 10(8) and 1.2 x 10(6) min(-1) M(-1). HuAChE was also 12500-fold more reactive toward VX(S) than toward nc-VX(S). Substitution of the cation binding subsite residue Trp86 with alanine resulted in a 3 order of magnitude decrease in HuAChE reactivity toward both VX enantiomers, while this replacement had an only marginal effect on the reactivity toward the enantiomers of nc-VX and the noncharged echothiophate. These results attest to the critical role played by Trp86 in accommodating the charged moieties of both VX enantiomers. A marked decrease in stereoselectivity toward VX(S) was observed following replacements of Phe295 at the acyl pocket (F295A and F295A/F297A). Replacement of the peripheral anionic site (PAS) residue Asp74 with asparagine (D74N) practically abolished stereoselectivity toward VX(S) (130-fold decrease), while a substitution which retains the negative charge at position 74 (D74E) had no effect. The results from kinetic studies and molecular simulations suggest that the differential reactivity toward the VX enantiomers is mainly a result of a different interaction of the charged leaving group with Asp74.
        
Title: A complex array of post-translation modifications determines the circulatory longevity of acetylcholinesterase in a hierarchical manner. Shafferman A, Chitlaru T, Ordentlich A, Velan B, Kronman C Ref: Cholinergic Mechanisms, CRC Press, :245, 2004 : PubMed
Title: Poster (35) The hierarchy of post-translation modifications determining circulatory longevity of acetylcholinesterase. Velan B, Kronman C, Chitlaru T, Cohen O, Ordentlich A, Shafferman A Ref: In: Cholinesterases in the Second Millennium: Biomolecular and Pathological Aspects, (Inestrosa NC, Campos EO) P. Universidad Catolica de Chile-FONDAP Biomedicina:339, 2004 : PubMed
Title: Overloading and removal of N-glycosylation targets on human acetylcholinesterase: effects on glycan composition and circulatory residence time Chitlaru T, Kronman C, Velan B, Shafferman A Ref: Biochemical Journal, 363:619, 2002 : PubMed
Optimization of post-translational modifications was shown to affect the ability of recombinant human acetylcholinesterase (rHuAChE) produced in HEK-293 cells to be retained in the circulation for prolonged periods of time [Kronman, Velan, Marcus, Ordentlich, Reuveny and Shafferman (1995) Biochem. J. 311, 959-967; Chitlaru, Kronman, Zeevi, Kam, Harel, Ordentlich, Velan and Shafferman (1998) Biochem. J. 336, 647-658; Chitlaru, Kronman, Velan and Shafferman (2001) Biochem. J. 354, 613-625]. To evaluate the possible contribution of the number of appended N-glycans in determining the pharmacokinetic behaviour of AChE, a series of sixteen recombinant human AChE glycoforms, differing in their number of appended N-glycans (2, 3, 4 or 5 glycans), state of assembly (dimeric or tetrameric) and terminal glycan sialylation (partially or fully sialylated) were generated. Extensive structural analysis of N-glycans demonstrated that the various glycan types associated with all the different rHuAChE glycoforms are essentially similar both in structure and abundance, and that production of the various glycoforms in the sialyltransferase-overexpressing 293ST-2D6 cell line resulted in the generation of enzyme species that carry glycans sialylated to the same extent. Pharmacokinetic profiling of the rHuAChE glycoforms in their fully tetramerized and sialylated state clearly demonstrated that circulatory longevity correlated directly with the number of attached N-glycans (mean residence times for rHuAChE glycoforms harbouring 2, 3, and 4 glycans=200, 740, and 1055 min respectively). This study provides evidence that glycan loading, together with N-glycan terminal processing and enzyme subunit oligomerization, operate in a hierarchical and concerted manner in determining the pharmacokinetic characteristics of AChE.
        
Title: Effect of human acetylcholinesterase subunit assembly on its circulatory residence Chitlaru T, Kronman C, Velan B, Shafferman A Ref: Biochemical Journal, 354:613, 2001 : PubMed
Sialylated recombinant human acetylcholinesterase (rHuAChE), produced by stably transfected cells, is composed of a mixed population of monomers, dimers and tetramers and manifests a time-dependent circulatory enrichment of the higher-order oligomeric forms. To investigate this phenomenon further, homogeneous preparations of rHuAChE differing in their oligomerization statuses were generated: (1) monomers, represented by the oligomerization-impaired C580A-rHuAChE mutant, (2) wild-type (WT) dimers and (3) tetramers of WT-rHuAChE generated in vitro by complexation with a synthetic ColQ-derived proline-rich attachment domain ('PRAD') peptide. Three different series of each of these three oligoform preparations were produced: (1) partly sialylated, derived from HEK-293 cells; (2) fully sialylated, derived from engineered HEK-293 cells expressing high levels of sialyltransferase; and (3) desialylated, after treatment with sialidase to remove sialic acid termini quantitatively. The oligosaccharides associated with each of the various preparations were extensively analysed by matrix-assisted laser desorption ionization-time-of-flight MS. With the enzyme preparations comprising the fully sialylated series, a clear linear relationship between oligomerization and circulatory mean residence time (MRT) was observed. Thus monomers, dimers and tetramers exhibited MRTs of 110, 195 and 740 min respectively. As the level of sialylation decreased, this differential behaviour became less pronounced; eventually, after desialylation all oligoforms had the same MRT (5 min). These observations suggest that multiple removal systems contribute to the elimination of AChE from the circulation. Here we also demonstrate that by the combined modulation of sialylation and tetramerization it is possible to generate a rHuAChE displaying a circulatory residence exceeding that of all other known forms of native or recombinant human AChE.
Post-translational modifications were recently shown to be responsible for the short circulatory mean residence time (MRT) of recombinant human acetylcholinesterase (rHuAChE) [Kronman, Velan, Marcus, Ordentlich, Reuveny and Shafferman (1995) Biochem. J. 311, 959--967; Chitlaru, Kronman, Zeevi, Kam, Harel, Ordentlich, Velan and Shafferman (1998) Biochem. J. 336, 647--658; Chitlaru, Kronman, Velan and Shafferman (2001) Biochem. J. 354, 613--625], which is one of the major obstacles to the fulfilment of its therapeutic potential as a bioscavenger. In the present study we demonstrate that the MRT of rHuAChE can be significantly increased by the controlled attachment of polyethylene glycol (PEG) side chains to lysine residues. Attachment of as many as four PEG molecules to monomeric rHuAChE had minimal effects, if any, on either the catalytic activity (K(m)=0.09 mM and k(cat)=3.9 x 10(5) min(-1)) or the reactivity of the modified enzyme towards active-centre inhibitors, such as edrophonium and di-isopropyl fluorophosphate, or to peripheral-site ligands, such as propidium, BW284C51 and even the bulky snake-venom toxin fasciculin-II. The increase in MRT of the PEG-modified monomeric enzyme is linearly dependent, in the tested range, on the number of attached PEG molecules, as well as on their size. It appears that even low level PEG-conjugation can overcome the deleterious effect of under-sialylation on the pharmacokinetic performance of rHuAChE. At the highest tested ratio of attached PEG-20000/rHuAChE (4:1), an MRT of over 2100 min was attained, a value unmatched by any other known form of recombinant or native serum-derived AChE reported to date.
        
Title: Does butyrylization of acetylcholinesterase through substitution of the six divergent aromatic amino acids in the active center gorge generate an enzyme mimic of butyrylcholinesterase? Kaplan D, Ordentlich A, Barak D, Ariel N, Kronman C, Velan B, Shafferman A Ref: Biochemistry, 40:7433, 2001 : PubMed
The active center gorge of human acetylcholinesterase (HuAChE) is lined by 14 aromatic residues, whereas in the closely related human butyrylcholinesterase (HuBChE) 3 of the aromatic active center residues (Phe295, Phe297, Tyr337) as well as 3 of the residues at the gorge entrance (Tyr72, Tyr124, Trp286) are replaced by aliphatic amino acids. To investigate whether this structural variability can account for the reactivity differences between the two enzymes, gradual replacement of up to all of the 6 aromatic residues in HuAChE by the corresponding residues in HuBChE was carried out. The affinities of the hexamutant (Y72N/Y124Q/W286A/F295L/F297V/Y337A) toward tacrine, decamethonium, edrophonium, huperzine A, or BW284C51 differed by about 5-, 80-, 170-, 25000-, and 17000-fold, respectively, from those of the wild-type HuAChE. For most of these prototypical noncovalent active center and peripheral site ligands, the hexamutant HuAChE displayed a reactivity phenotype closely resembling that of HuBChE. These results support the accepted view that the active center architectures of AChE and BChE differ mainly by the presence of a larger void space in BChE. Nevertheless, reactivity of the hexamutant HuAChE toward the substrates acetylthiocholine and butyrylthiocholine, or covalent ligands such as phosphonates and the transition state analogue m-(N,N,N-trimethylammonio)trifluoroacetophenone (TMTFA), is about 45-170-fold lower than that of HuBChE. Most of this reduction in reactivity can be related to the combined replacements of the three aromatic residues at the active center, Phe295, Phe297, and Tyr337. We propose that the hexamutant HuAChE, unlike BChE, is impaired in its capacity to accommodate certain tetrahedral species in the active center. This impairment may be related to the enhanced mobility of the catalytic histidine His447, which is observed in molecular dynamics simulations of the hexamutant and the F295L/F297V/Y337A HuAChE enzymes but not in the wild-type HuAChE.
Acetylcholinesterases (AChEs) form conjugates with certain highly toxic organophosphorus (OP) agents that become gradually resistant to reactivation. This phenomenon termed "aging" is a major factor limiting the effectiveness of therapy in certain cases of OP poisoning. While AChE adducts with phosphonates and phosphates are known to age through scission of the alkoxy C-O bond, the aging path for adducts with phosphoroamidates (P-N agents) like the nerve agent N,N-dimethylphosphonocyanoamidate (tabun) is not clear. Here we report that conjugates of tabun and of its butyl analogue (butyl-tabun) with the E202Q and F338A human AChEs (HuAChEs) age at similar rates to that of the wild-type enzyme. This is in marked contrast to the large effect of these substitutions on the aging of corresponding adducts with phosphates and phosphonates, suggesting that a different aging mechanism may be involved. Both tabun and butyl-tabun appear to be similarly accommodated in the active center, as suggested by molecular modeling and by kinetic studies of phosphylation and aging with a series of HuAChE mutants (E202Q, F338A, F295A, F297A, and F295L/F297V). Mass spectrometric analysis shows that HuAChE adduct formation with tabun and butyl-tabun occurs through loss of cyanide and that during the aging process both of these adducts show a mass decrease of 28 +/- 4 Da. Due to the nature of the alkoxy substituent, such mass decrease can be unequivocally assigned to loss of the dimethylamino group, at least for the butyl-tabun conjugate. This is the first demonstration that AChE adducts with toxic P-N agents can undergo aging through scission of the P-N bond.
Several highly attenuated spore-forming nontoxinogenic and nonencapsulated Bacillus anthracis vaccines differing in levels of expression of recombinant protective antigen (rPA) were constructed. Biochemical analyses (including electrospray mass spectroscopy and N terminus amino acid sequencing) as well as biological and immunological tests demonstrated that the rPA retains the characteristics of native PA. A single immunization of guinea pigs with 5 x 10(7) spores of one of these recombinant strains, MASC-10, expressing high levels of rPA (>/=100 microgram/ml) from a constitutive heterologous promoter induced high titers of neutralizing anti-PA antibodies. This immune response was long lasting (at least 12 months) and provided protection against a lethal challenge of virulent (Vollum) anthrax spores. The recombinant B. anthracis spore vaccine appears to be more efficacious than the vegetative cell vaccine. Furthermore, while results clearly suggest a direct correlation between the level of expression of PA and the potency of the vaccine, they also suggest that some B. anthracis spore-associated antigen(s) may contribute in a significant manner to protective immunity.
        
Title: Hierarchy of post-translational modifications involved in the circulatory longevity of glycoproteins. Demonstration of concerted contributions of glycan sialylation and subunit assembly to the pharmacokinetic behavior of bovine acetylcholinesterase Kronman C, Chitlaru T, Elhanany E, Velan B, Shafferman A Ref: Journal of Biological Chemistry, 275:29488, 2000 : PubMed
The tetrameric form of native serum-derived bovine acetylcholinesterase is retained in the circulation for much longer periods (mean residence time, MRT = 1390 min) than recombinant bovine acetylcholinesterase (rBoAChE) produced in the HEK-293 cell system (MRT = 57 min). Extensive matrix-assisted laser desorption ionization-time of flight analyses established that the basic structures of the N-glycans associated with the native and recombinant enzymes are similar (the major species (50-60%) are of the biantennary fucosylated type and 20-30% are of the triantennary type), yet the glycan termini of the native enzyme are mostly capped with sialic acid (82%) and alpha-galactose (12%), whereas glycans of the recombinant enzyme exhibit a high level of exposed beta-galactose residues (50%) and a lack of alpha-galactose. Glycan termini of both fetal bovine serum and rBoAChE were altered in vitro using exoglycosidases and sialyltransferase or in vivo by a HEK-293 cell line developed specifically to allow efficient sialic acid capping of beta-galactose-exposed termini. In addition, the dimeric and monomeric forms of rBoAChE were quantitatively converted to tetramers by complexation with a synthetic peptide representing the human ColQ-derived proline-rich attachment domain. Thus by controlling both the level and nature of N-glycan capping and subunit assembly, we generated and characterized 9 distinct bovine AChE glycoforms displaying a 400-fold difference in their circulatory lifetimes (MRT = 3.5-1390 min). This revealed some general rules and a hierarchy of post-translation factors determining the circulatory profile of glycoproteins. Accordingly, an rBoAChE was generated that displayed a circulatory profile indistinguishable from the native form.
Structures of recombinant wild-type human acetylcholinesterase and of its E202Q mutant as complexes with fasciculin-II, a 'three-finger' polypeptide toxin purified from the venom of the eastern green mamba (Dendroaspis angusticeps), are reported. The structure of the complex of the wild-type enzyme was solved to 2.8 A resolution by molecular replacement starting from the structure of the complex of Torpedo californica acetylcholinesterase with fasciculin-II and verified by starting from a similar complex with mouse acetylcholinesterase. The overall structure is surprisingly similar to that of the T. californica enzyme with fasciculin-II and, as expected, to that of the mouse acetylcholinesterase complex. The structure of the E202Q mutant complex was refined starting from the corresponding wild-type human acetylcholinesterase structure, using the 2.7 A resolution data set collected. Comparison of the two structures shows that removal of the charged group from the protein core and its substitution by a neutral isosteric moiety does not disrupt the functional architecture of the active centre. One of the elements of this architecture is thought to be a hydrogen-bond network including residues Glu202, Glu450, Tyr133 and two bridging molecules of water, which is conserved in other vertebrate acetylcholinesterases as well as in the human enzyme. The present findings are consistent with the notion that the main role of this network is the proper positioning of the Glu202 carboxylate relative to the catalytic triad, thus defining its functional role in the interaction of acetylcholinesterase with substrates and inhibitors.
The role of electrostatics in the function of acetylcholinesterase (AChE) has been investigated by both theoretical and experimental approaches. Second-order rate constants (kE = k(cat)/Km) for acetylthiocholine (ATCh) turnover have been measured as a function of ionic strength of the reaction medium for wild-type and mutant AChEs. Also, binding and dissociation rate constants have been measured as a function of ionic strength for the respective charged and neutral transition state analog inhibitors m-(N,N,N-trimethylammonio)trifluoroacetophenone (TMTFA) and m-(t-butyl)trifluoroacetophenone (TBTFA). Linear free-energy correlations between catalytic rate constants and inhibition constants indicate that kE for ATCh turnover is rate limited by terminal binding events. Comparison of binding rate constants for TMTFA and TBTFA attests to the sizable electrostatic discrimination of AChE. Free energy profiles for cationic ligand release from the active sites of wild-type and mutant AChEs have been calculated via a model that utilizes the structure of T. californica AChE, a spherical ligand, and energy terms that account for electrostatic and van der Waals interactions and chemical potential. These calculations indicate that EA and EI complexes are not bound with respect to electrostatic interactions, which obviates the need for a 'back door' for cationic ligand release. Moreover, the computed energy barriers for ligand release give linear free-energy correlations with log(kE) for substrate turnover, which supports the general correctness of the computational model.
The stereoselectivity of the phosphonylation reaction and the effects of adduct configuration on the aging process were examined for human acetylcholinesterase (HuAChE) and its selected active center mutants, using the four stereomers of 1,2,2-trimethylpropyl methylphosphonofluoridate (soman). The reactivity of wild type HuAChE toward the PS-soman diastereomers was 4.0-7.5 x 10(4)-fold higher than that toward the PR-diastereomers. Aging of the PSCS-somanyl-HuAChE conjugate was also >1.6 x 10(4)-fold faster than that of the corresponding PRCS-somanyl adduct, as shown by both reactivation and electrospray mass spectrometry (ESI/MS) experiments. On the other hand, both processes exhibited very limited sensitivity to the chirality of the alkoxy group Calpha of either PS- or PR-diastereomers. These stereoselectivities presumably reflect the relative participation of the enzyme in stabilization of the Michaelis complexes and in dealkylation of the respective covalent conjugates, and therefore could be utilized for further probing of the HuAChE active center functional architecture. Reactivities of HuAChE enzymes carrying replacements at the acyl pocket (F295A, F297A, and F295L/F297V) indicate that stereoselectivity with respect to the soman phosphorus chirality depends on the structure of this binding subsite, but this stereoselectivity cannot be explained only by limitation in the capacity to accommodate the PR-diastereomers. In addition, these acyl pocket enzyme mutants display some (5-10-fold) preference for the PRCR-soman over the PRCS-stereomer, while reactivity of the hydrophobic pocket mutant enzyme W86F toward the PRCS-soman resembles that of the wild type HuAChE. Residue substitutions in the H-bond network (E202Q, E450A, Y133F, and Y133A) and the hydrophobic pocket (F338A, W86A, W86F, and Y337A) result in a limited stereoselectivity for the PSCS- over the PSCR-stereomer. Aging of the PS-somanyl conjugates with all the HuAChE mutant enzymes tested practically lacked stereoselectivity with respect to the Calpha of the alkoxy moiety. Thus, the inherent asymmetry of the active center does not seem to affect the rate-determining step of the dealkylation process, possibly because both the PSCS- and the PSCR-somanyl moieties yield the same carbocationic intermediate.
Sialylation of N-glycans associated with recombinant human acetylcholinesterase (rHuAChE) has a central role in determining its circulatory clearance rate. Human embryonal kidney 293 (HEK-293) cells, which are widely used for the expression of recombinant proteins, seem to be limited in their ability to sialylate overexpressed rHuAChE. High-resolution N-glycan structural analysis, by gel permeation, HPLC anion-exchange chromatography and high-pH anion-exchange chromatography (HPAEC), revealed that the N-glycans associated with rHuAChE produced in HEK-293 cells belong mainly to the complex-biantennary class and are only partly sialylated, with approx. 60% of the glycans being monosialylated. This partial sialylation characterizes rHuAChE produced by cells selected for high-level expression of the recombinant protein. In low-level producer lines, the enzyme exhibits a higher sialic acid content, suggesting that undersialylation of rHuAChE in high-level producer lines stems from a limited endogenous glycosyltransferase activity. To improve sialylation in HEK-293 cells, rat liver beta-galactoside alpha-2,6-sialyltransferase cDNA was stably transfected into cells expressing high levels of rHuAChE. rHuAChE produced by the modified cells displayed a significantly higher proportion of fully sialylated glycans as shown by sialic acid incorporation assays, direct measurement of sialic acid, and HPAEC glycan profiling. Genetically modified sialylated rHuAChE exhibited increased circulatory retention (the slow-phase half-life, t12beta, was 130 min, compared with 80 min for the undersialylated enzyme). Interestingly, the same increase in circulatory residence was observed when rHuAChE was subjected to extensive sialylation in vitro. The engineered HEK-293 cells in which the glycosylation machinery was modified might represent a valuable tool for the high level of expression of recombinant glycoproteins whose sialic acid content is important for their function or for pharmacokinetic behaviour.
Title: Correlation of Isotope and Viscosity Effects Malany S, Taylor P, Quinn DM, Sawai M, Shafferman A, Velan B, Kronman C Ref: In: Structure and Function of Cholinesterases and Related Proteins - Proceedings of Sixth International Meeting on Cholinesterases, (Doctor, B.P., Taylor, P., Quinn, D.M., Rotundo, R.L., Gentry, M.K. Eds) Plenum Publishing Corp.:232, 1998 : PubMed
Title: Bovine Acetylcholinestrase Cloning, Expression and Characterization of the Recombinant Enzyme Mendelson I, Kronman C, Zeliger N, Seri T, Ordentlich A, Shafferman A, Velan B Ref: In: Structure and Function of Cholinesterases and Related Proteins - Proceedings of Sixth International Meeting on Cholinesterases, (Doctor, B.P., Taylor, P., Quinn, D.M., Rotundo, R.L., Gentry, M.K. Eds) Plenum Publishing Corp.:148, 1998 : PubMed
The bovine acetylcholinesterase (BoAChE) gene was cloned from genomic DNA and its structure was determined. Five exons coding for the AChE T-subunit and the alternative H-subunit were identified and their organization suggests high conservation of structure in mammalian AChE genes. The deduced amino acid sequence of the bovine T-subunit is highly similar to the human sequence, showing differences at 34 positions only. However, the cloned BoAChE sequence differs from the published amino acid sequence of AChE isolated from fetal bovine serum (FBS) by: (1) 13 amino acids, 12 of which are conserved between BoAChE and human AChE, and (2) the presence of four rather than five potential N-glycosylation sites. The full coding sequence of the mature BoAChE T-subunit was expressed in human embryonal kidney 293 cells (HEK-293). The catalytic properties of recombinant BoAChE and its reactivity towards various inhibitors were similar to those of the native bovine enzyme. Soluble recombinant BoAChE is composed of monomers, dimers and tetramers, yet in contrast to FBS-AChE, tetramer formation is not efficient. Comparative SDS/PAGE analysis reveals that all four potential N-glycosylation sites identified by DNA sequencing appear to be utilized, and that recombinant BoAChE comigrates with FBS-AChE. A major difference between the recombinant enzyme and the native enzyme was observed when clearance from circulation was examined. The HEK-293-derived enzyme was cleared from the circulation at a much faster rate than FBS-AChE. This difference in behaviour, together with previous studies on the effect of post-translation modification on human AChE clearance [Kronman, Velan, Marcus, Ordentlich, Reuveny and Shafferman (1995) Biochem. J. 311, 959-967] suggests that cell-dependent glycosylation plays a key role in AChE circulatory residence.
        
Title: Does Electrostatic Attraction or Steering by Charged Residues within the Gorge Contribute to the Reactivity of AChE? Ordentlich A, Barak D, Stein D, Berman D, Kronman C, Ariel N, Velan B, Shafferman A Ref: In: Structure and Function of Cholinesterases and Related Proteins - Proceedings of Sixth International Meeting on Cholinesterases, (Doctor, B.P., Taylor, P., Quinn, D.M., Rotundo, R.L., Gentry, M.K. Eds) Plenum Publishing Corp.:234, 1998 : PubMed
The contribution of the oxyanion hole to the functional architecture and to the hydrolytic efficiency of human acetylcholinesterase (HuAChE) was investigated through single replacements of its elements, residues Gly-121, Gly-122 and the adjacent residue Gly-120, by alanine. All three substitutions resulted in about 100-fold decrease of the bimolecular rate constants for hydrolysis of acetylthiocholine; however, whereas replacements of Gly-120 and Gly-121 affected only the turnover number, mutation of residue Gly-122 had an effect also on the Michaelis constant. The differential behavior of the G121A and G122A enzymes was manifested also toward the transition state analog m-(N,N, N-trimethylammonio)trifluoroacetophenone (TMTFA), organophosphorous inhibitors, carbamates, and toward selected noncovalent active center ligands. Reactivity of both mutants toward TMTFA was 2000-11, 000-fold lower than that of the wild type HuAChE; however, the G121A enzyme exhibited a rapid inhibition pattern, as opposed to the slow binding kinetics shown by the G122A enzyme. For both phosphates (diethyl phosphorofluoridate, diisopropyl phosphorofluoridate, and paraoxon) and phosphonates (sarin and soman), the decrease in inhibitory activity toward the G121A enzyme was very substantial (2000-6700-fold), irrespective of size of the alkoxy substituents on the phosphorus atom. On the other hand, for the G122A HuAChE the relative decline in reactivity toward phosphonates (500-460-fold) differed from that toward the phosphates (12-95-fold). Although formation of Michaelis complexes with substrates does not seem to involve significant interaction with the oxyanion hole, interactions with this motif are a major stabilizing element in accommodation of covalent inhibitors like organophosphates or carbamates. These observations and molecular modeling suggest that replacements of residues Gly-120 or Gly-121 by alanine alter the structure of the oxyanion hole motif, abolishing the H-bonding capacity of residue at position 121. These mutations weaken the interaction between HuAChE and the various ligands by 2.7-5.0 kcal/mol. In contrast, variations in reactivity due to replacement of residue Gly 122 seem to result from steric hindrance at the active center acyl pocket
        
Title: Contribution of the Active Center Functional Architecture to AChE Reactivity Toward Substrates and Inhibitors Shafferman A, Ordentlich A, Barak D, Kronman C, Ariel N, Velan B Ref: In: Structure and Function of Cholinesterases and Related Proteins - Proceedings of Sixth International Meeting on Cholinesterases, (Doctor, B.P., Taylor, P., Quinn, D.M., Rotundo, R.L., Gentry, M.K. Eds) Plenum Publishing Corp.:203, 1998 : PubMed
Title: Contribution of Primary Sequence and Post-Translation Modification to the Pharmacokinetics of Human and Bovine Acetylcholinesterases Velan B, Kronman C, Chitlaru T, Mendelson I, Ordentlich A, Shafferman A Ref: In: Structure and Function of Cholinesterases and Related Proteins - Proceedings of Sixth International Meeting on Cholinesterases, (Doctor, B.P., Taylor, P., Quinn, D.M., Rotundo, R.L., Gentry, M.K. Eds) Plenum Publishing Corp.:291, 1998 : PubMed
The role of the functional architecture of human acetylcholinesterase (HuAChE) active center in facilitating reactions with organophosphorus inhibitors was examined by a combination of site-directed mutagenesis and kinetic studies of phosphorylation with organophosphates differing in size of their alkoxy substituents and in the nature of the leaving group. Replacements of residues Phe-295 and Phe-297, constituting the HuAChE acyl pocket, increase up to 80-fold the reactivity of the enzymes toward diisopropyl phosphorofluoridate, diethyl phosphorofluoridate, and p-nitrophenyl diethyl phosphate (paraoxon), indicating the role of this subsite in accommodating the phosphate alkoxy substituent. On the other hand, a decrease of up to 160-fold in reactivity was observed for enzymes carrying replacements of residues Tyr-133, Glu-202, and Glu-450, which are constituents of the hydrogen bond network in the HuAChE active center, which maintains its unique functional architecture. Replacement of residues Trp-86, Tyr-337, and Phe-338 in the alkoxy pocket affected reactivity toward diisopropyl phosphorofluoridate and paraoxon, but to a lesser extent that toward diethyl phosphorofluoridate, indicating that both the alkoxy substituent and the p-nitrophenoxy leaving group interact with this subsite. In all cases the effects on reactivity toward organophosphates, demonstrated in up to 10,000-fold differences in the values of bimolecular rate constants, were mainly a result of altered affinity of the HuAChE mutants, while the apparent first order rate constants of phosphorylation varied within a narrow range. This finding indicates that the main role of the functional architecture of HuAChE active center in phosphorylation is to facilitate the formation of enzyme-inhibitor Michaelis complexes and that this affinity, rather than the nucleophilic activity of the enzyme catalytic machinery, is a major determinant of HuAChE reactivity toward organophosphates.
        
Title: Electrostatic Attraction by Surface Charge does not Contribute to the Catalytic Efficiency of Acetylcholinesterase Barak D, Ordentlich A, Kronman C, Ber R, Bino T, Ariel N, Osman R, Velan B, Shafferman A Ref: In Enzyme of the Cholinesterase Family - Proceedings of Fifth International Meeting on Cholinesterases, (Quinn, D.M., Balasubramanian, A.S., Doctor, B.P., Taylor, P., Eds) Plenum Publishing Corp.:223, 1995 : PubMed
Replacement of residues Asp74, Trp286, and Tyr72, which are constituents of the peripheral anionic site (PAS) of human acetylcholinesterase (HuAChE), affected similarly both the binding and the inhibition constants of the PAS-specific ligand propidium, demonstrating that changes in the inhibitory activity are a direct consequence of altered binding to the PAS. In contrast, the active center HuAChE mutants W86A and Y133A show respective 350- and 25-fold increased resistance to inhibition by propidium but no change in binding affinities, demonstrating that the allosteric mechanism of PAS-mediated inhibition involves a conformational change of these Trp86 and Tyr133 residues rather than physical obstruction of substrate access by the inhibitor itself. These findings support the recent proposal that the allosteric mechanism operates via transition between active and nonactive conformations of the anionic subsite Trp86 and that replacement of Tyr133 by alanine may stabilize a nonactive Trp86 conformation that occludes the active center [Ordentlich et al. (1995) J. Biol. Chem. 270, 2082]. In further support of this mechanism and the role of Tyr133, we find that (a) the dissociation constants (Kd) for the noncovalent complexes of the irreversible inhibitors diisopropyl phosphorofluoridate or paraoxon with Y133A HuAChE are increased 20-500-fold, relative to either wild-type enzyme or its Y133F or W86A mutants; and (b) access of substrates such as 3,3-dimethylbutyl thioacetate is restored by removal of Trp86 from the Y133A enzyme (i.e., the W86A/Y133A mutant). We suggest that the conformational transition of Trp86 is coupled to the motions of the cysteine loop (Cys69-Cys96) of HuAChE and is inherent to the dynamics of the native enzyme.
        
Title: Signal-Mediated Cellular Retention and Subunit Assembly of Human Acetylcholinesterase Kronman C, Flashner Y, Shafferman A, Velan B Ref: In Enzyme of the Cholinesterase Family - Proceedings of Fifth International Meeting on Cholinesterases, (Quinn, D.M., Balasubramanian, A.S., Doctor, B.P., Taylor, P., Eds) Plenum Publishing Corp.:293, 1995 : PubMed
The possible role of post-translational modifications such as subunit oligomerization, protein glycosylation and oligosaccharide processing on the circulatory life-time of proteins was studied using recombinant human acetylcholinesterase (rHuAChE). Different preparations of rHuAChE containing various amounts of tetramers, dimers and monomers are cleared at similar rates from the circulation, suggesting that oligomerization does not play an important role in determining the rate of clearance. An engineered rHuAChE mutant containing only one N-glycosylation site was cleared from the circulation more rapidly than the wild-type triglycosylated enzyme. On the other hand, hyperglycosylated mutants containing either four or five occupied N-glycosylation sites, analagous to those present on the slowly cleared fetal bovine serum acetylcholinesterase (FBS-AChE), were also cleared more rapidly from the bloodstream than the wild-type species. Furthermore, the two different tetraglycosylated mutants were cleared at different rates while the pentaglycosylated mutant exhibited the most rapid clearance profile. These results imply that though the number of N-glycosylation sites plays a role in the circulatory life-time of the enzyme, the number of N-glycan units in itself does not determine the rate of clearance. When saturating amounts of asialofetuin were administered together with rHuAChE, the circulatory half-life of the enzyme was dramatically increased (from 80 min to 19 h) and was found to be similar to that displayed by plasma-derived cholinesterases while desialylation of these enzymes caused a sharp decrease in the circulatory half-life to approximately 3-5 min. Determination of the average number of sialic acid residues per enzyme subunit of the five different N-glycosylation species generated, revealed that the rate of clearance is not a function of the absolute number of appended sialic acid moieties but rather of the number of unoccupied sialic acid attachment sites per enzyme molecule. Specifically, we demonstrate an inverse-linear relationship between the number of vacant sialic acid attachment sites and the values of the enzyme residence time within the bloodstream.
        
Title: Amino Acids Determining Specificity to OP-Agents and Facilitating the Aging Process in Human Acetylcholinesterase Ordentlich A, Kronman C, Stein D, Ariel N, Reuveny S, Marcus D, Segall Y, Barak D, Velan B, Shafferman A Ref: In Enzyme of the Cholinesterase Family - Proceedings of Fifth International Meeting on Cholinesterases, (Quinn, D.M., Balasubramanian, A.S., Doctor, B.P., Taylor, P., Eds) Plenum Publishing Corp.:221, 1995 : PubMed
Title: Contribution of aromatic moieties of tyrosine 133 and of the anionic subsite tryptophan 86 to catalytic efficiency and allosteric modulation of acetylcholinesterase Ordentlich A, Barak D, Kronman C, Ariel N, Segall Y, Velan B, Shafferman A Ref: Journal of Biological Chemistry, 270:2082, 1995 : PubMed
Substitution of Trp-86, in the active center of human acetylcholinesterase (HuAChE), by aliphatic but not by aromatic residues resulted in a several thousandfold decrease in reactivity toward charged substrate and inhibitors but only a severalfold decrease for noncharged substrate and inhibitors. The W86A and W86E HuAChE enzymes exhibit at least a 100-fold increase in the Michaelis-Menten constant or 100-10,000-fold increase in inhibition constants toward various charged inhibitors, as compared to W86F HuAChE or the wild type enzyme. On the other hand, replacement of Glu-202, the only acidic residue proximal to the catalytic site, by glutamine resulted in a nonselective decrease in reactivity toward charged and noncharged substrates or inhibitors. Thus, the quaternary nitrogen groups of substrates and other active center ligands, are stabilized by cation-aromatic interaction with Trp-86 rather than by ionic interactions, while noncharged ligands appear to bind to distinct site(s) in HuAChE. Analysis of the Y133F and Y133A HuAChE mutated enzymes suggests that the highly conserved Tyr-133 plays a dual role in the active center: (a) its hydroxyl appears to maintain the functional orientation of Glu-202 by hydrogen bonding and (b) its aromatic moiety maintains the functional orientation of the anionic subsite Trp-86. In the absence of aromatic interactions between Tyr-133 and Trp-86, the tryptophan acquires a conformation that obstructs the active site leading, in the Y133A enzyme, to several hundredfold decrease in rates of catalysis, phosphorylation, or in affinity to reversible active site inhibitors. It is proposed that allosteric modulation of acetylcholinesterase activity, induced by binding to the peripheral anionic sites, proceeds through such conformational change of Trp-86 from a functional anionic subsite state to one that restricts access of substrates to the active center.
Title: Compilation of Evaluated Mutants of Cholinesterases Shafferman A, Kronman C, Ordentlich A Ref: In Enzyme of the Cholinesterase Family - Proceedings of Fifth International Meeting on Cholinesterases, (Quinn, D.M., Balasubramanian, A.S., Doctor, B.P., Taylor, P., Eds) Plenum Publishing Corp.:481, 1995 : PubMed
Title: Post-Translation Processing of Acetylcholinesterase Velan B, Kronman C, Ordentlich A, Flashner Y, Ber R Ref: In Enzyme of the Cholinesterase Family - Proceedings of Fifth International Meeting on Cholinesterases, (Quinn, D.M., Balasubramanian, A.S., Doctor, B.P., Taylor, P., Eds) Plenum Publishing Corp.:269, 1995 : PubMed
Title: Role of tyrosine 337 in the binding of huperzine A to the active site of human acetylcholinesterase Ashani Y, Grunwald J, Kronman C, Velan B, Shafferman A Ref: Molecular Pharmacology, 45:555, 1994 : PubMed
Huperzine A (HUP), a natural, potent, 'slow,' reversible inhibitor of antiacetylcholinesterase (AChE), has been suggested to be superior to antiacetylcholinesterase drugs now being used for management of Alzheimer's disease. To delineate the binding site of human AChE (HuAChE) for HUP, the biochemical constants kon, koff, and Ki were determined for complexes formed between HUP and single-site (Y337F, Y337A, F295A, W286A, and E202Q) or double-site (F295L/F297V) mutants of recombinant HuAChE (rHuAChE). The kinetic and dissociation constants were compared with those obtained for wild-type rHuAChE and AChE from Torpedo californica. Results demonstrate that the inhibition of AChE by HUP occurs through association with residues located inside the active site 'gorge,' rather than at the rim of the gorge. Tyrosine at position 337 (Y337) is essential for inhibition of rHuAChE by HUP (Ki = 26 nM). An aromatic array constituted from residues Y337, F295, and probably W86 is likely to offer a multicontact subsite that interacts with the ammonium group and with both the exo-and endocyclic double bond moieties of HUP. Lack of the aromatic side chain in the position homologous to Y337 explains the poor inhibitory potency of HUP toward human butyrylcholinesterase (Ki > 20,000 nM). Replacement of the carboxylate-containing E202 by glutamine had only marginal effect on the stability of the complex formed between HUP and rHuAChE. The pH-rate profiles suggest that destabilization of the complex after proton gain cannot be attributed solely to protonation of E202. These findings are expected to establish HUP as a lead compound for the design of new anti-AChE drugs.
Several of the residues constituting the peripheral anionic site (PAS) in human acetylcholinesterase (HuAChE) were identified by a combination of kinetic studies with 19 single and multiple HuAChE mutants, fluorescence binding studies with the Trp-286 mutant, and by molecular modeling. Mutants were analyzed with three structurally distinct positively charged PAS ligands, propidium, decamethonium, and di(p-allyl-N-dimethylaminophenyl)pentane-3-one (BW284C51), as well as with selective active center inhibitors, hexamethonium and edrophonium. Single mutations of residues Tyr-72, Tyr-124, Glu-285, Trp-286, and Tyr-341 resulted in up to 10-fold increase in inhibition constants for PAS ligands, whereas for multiple mutants up to 400-fold increase was observed. The 6th PAS element residue Asp-74 is unique in its ability to affect conformation of both the active site and the PAS (Shafferman, A., Velan, B., Ordentlich, A., Kronman, C., Grosfeld, H., Leitner, M., Flashner, Y., Cohen, S., Barak, D., and Ariel, N. (1992) EMBO J. 11, 3561-3568) as demonstrated by the several hundred-fold increase in Ki for D74N inhibition by the bisquaternary ligands decamethonium and BW284C51. Based on these studies, singular molecular models for the various HuAChE inhibitor complexes were defined. Yet, for the decamethonium complex two distinct conformations were generated, accommodating the quaternary ammonium group by interactions with either Trp-286 or with Tyr-341. We propose that the PAS consists of a number of binding sites, close to the entrance of the active site gorge, sharing residues Asp-74 and Trp-286 as a common core. Binding of ligands to these residues may be the key to the allosteric modulation of HuAChE catalytic activity. This functional degeneracy is a result of the ability of the Trp-286 indole moiety to interact either via stacking, aromatic-aromatic, or via pi-cation attractions and the involvement of the carboxylate of Asp-74 in charge-charge or H-bond interactions.
        
Title: The back door hypothesis for product clearance in acetylcholinesterase challenged by site-directed mutagenesis Kronman C, Ordentlich A, Barak D, Velan B, Shafferman A Ref: Journal of Biological Chemistry, 269:27819, 1994 : PubMed
The active site of acetylcholinesterase is near the bottom of a long and narrow gorge. The dimensions of the gorge and the strong electrostatic field generated by the enzyme appear inconsistent with the enzyme's high turnover rate. Consequently, a "back door" mechanism involving movement of the reaction products through a transient opening near the active center was recently suggested. We investigated this hypothesis in human acetylcholinesterase by testing mutants at key residues (Glu-84, Trp-86, Asp-131, and Val-132) located near or along the putative back door channel. The turnover rates of all mutants tested, and in particular of V132K, where the channel is expected to be sealed by salt bridge Lys-132-Glu-452, are similar to that of the wild type enzyme. This indicates that the proposed back door is not a route for product clearance from the active site gorge of acetylcholinesterase and is probably of no functional relevance to its catalytic activity.
Acetylcholinesterases (AChEs) are characterized by a high net negative charge and by an uneven surface charge distribution, giving rise to a negative electrostatic potential extending over most of the molecular surface. To evaluate the contribution of these electrostatic properties to the catalytic efficiency, 20 single- and multiple-site mutants of human AChE were generated by replacing up to seven acidic residues, vicinal to the rim of the active-center gorge (Glu84, Glu285, Glu292, Asp349, Glu358, Glu389 and Asp390), by neutral amino acids. Progressive simulated replacement of these charged residues results in a gradual decrease of the negative electrostatic potential which is essentially eliminated by neutralizing six or seven charges. In marked contrast to the shrinking of the electrostatic potential, the corresponding mutations had no significant effect on the apparent bimolecular rate constants of hydrolysis for charged and non-charged substrates, or on the Ki value for a charged active center inhibitor. Moreover, the kcat values for all 20 mutants are essentially identical to that of the wild type enzyme, and the apparent bimolecular rate constants show a moderate dependence on the ionic strength, which is invariant for all the enzymes examined. These findings suggest that the surface electrostatic properties of AChE do not contribute to the catalytic rate, that this rate is probably not diffusion-controlled and that long-range electrostatic interactions play no role in stabilization of the transition states of the catalytic process.
        
Title: Reversal of signal-mediated cellular retention by subunit assembly of human acetylcholinesterase Velan B, Kronman C, Flashner Y, Shafferman A Ref: Journal of Biological Chemistry, 269:22719, 1994 : PubMed
The interrelationship between signal-mediated endoplasmic reticulum retention and control of subunit assembly in secreted complex proteins was examined in recombinant 293 cells expressing human acetylcholinesterase (HuAChE). This was achieved by analyzing the mutual effects of co-residing retention and dimerization signals on enzyme secretion by transfected cells. The function of putative signals within the COOH-terminal tetrapeptide CSDL of HuAChE was examined by site-directed mutagenesis. The CSDL tetrapeptide carries the free cysteine (Cys-580) involved in subunit assembly, yet it fails to function as a KDEL-type retention signal. This was demonstrated by mutations that increase similarity to the canonical retention signal (substitution of CSDL by KSDL) or those that deviate from it (substitution to CSAL). Cells expressing both types of mutants exhibited cell-associated HuAChE levels identical to that of wild type enzyme. Appendage of an engineered KDEL retention signal to a dimerization-impaired HuA-ChE subunit (the C580A mutant) resulted in intracellular retention of large amounts of fully active enzyme not prone to proteolytic degradation. On the other hand, attachment of KDEL to a native, dimerization-competent HuAChE polypeptide did not lead to intracellular retention and allowed efficient secretion of enzyme to the cell growth medium. Yet, appendage of KDEL to the native HuAChE led to some retardation in the transport of enzyme molecules through the Golgi apparatus, as manifested by increase in cellular population of endo H-resistant dimers, when compared with wild type enzyme. Taken together, these results indicate (alpha) that sub-unit dimerization mediated by the COOH-terminal cysteine of HuAChE can reverse the signal-mediated retention by masking recognition of KDEL by its cognate receptor and (b) that the native sequences of the acetylcholinesterase subunit polypeptide do not appear to function as a coupled retention/dimerization signal in the control of secretion of assembled enzyme molecules.
        
Title: Interrelations between assembly and secretion of recombinant human acetylcholinesterase Kerem A, Kronman C, Bar-Nun S, Shafferman A, Velan B Ref: Journal of Biological Chemistry, 268:180, 1993 : PubMed
Transport and secretion of recombinant human acetylcholinesterase (rHuAChE) were studied in transfected human 293 cells expressing either the oligomerized soluble enzyme or a monomeric mutant derivative in which Cys-580 was substituted by alanine (C580A). In cells expressing the wild-type enzyme, the gradual assembly of newly synthesized intracellular rHuAChE monomers into oligomers occurs within the endoplasmic reticulum. Secretion of mature wild-type enzyme into the medium is efficient and appears to be exclusive to multimeric forms. Consistently, intracellular oligomers, but not monomers, are endoglycosidase H-resistant, indicating that only oligomers undergo terminal glycosylation in the wild-type enzyme. In contrast, in cells expressing the dimerization-defective C580A mutant, newly synthesized rHuAChE monomers undergo terminal glycosylation and are secreted into the medium as efficiently as wild-type multimers. No significant difference between the intracellular transport rates of wild-type rHuAChE oligomers and mutant C580A monomers was revealed by probing with specific lectins. In both systems, transport and processing prior to the trans-Golgi galactosylation compartment appear to be rate-limiting, whereas the following passage to the cell surface is rapid. In conclusion, we suggest that in the presence of a free cysteine at the COOH terminus of the rHuAChE polypeptide, secretion of monomers is not effectuated, whereas in its absence, monomers are exported from the endoplasmic reticulum and are capable of traversing the entire secretory pathway.
        
Title: Evaluation of anchorage-dependent cell propagation systems for production of human acetylcholinesterase by recombinant 293 cells Lazar A, Reuveny S, Kronman C, Velan B, Shafferman A Ref: Cytotechnology, 13:115, 1993 : PubMed
Production of recombinant human acetylcholinesterase (AChE) by a high producer human embryonic kidney cell line (293) was evaluated by three main cell propagation systems; surface propagator, fixed-bed reactor and stirred microcarrier cultures. The recombinant cell line expresses AChE levels as high as 10-20 mg/l/day. System productivities in either the surface propagator (multitray system), or in the fixed-bed reactor (polyurethane macroporous sponges) were 4-8 mg AChE/l/day during a production period of 8 days. Similar productive rates, yet longer production periods (up to 22 days), were obtained in microcarrier (MC) cultures using either polystyrene beads (Biosilon); collagen-coated dextran beads (Cytodex-3); or gelatin macroporous beads (Cultispher-G). Best results were obtained in an aggregate culture using cellulose beads charged with diethylaminoethyl (DEAE) groups, (Servacel), as carriers. In this culture, a system productivity of 6-10 mg/l/day was maintained for 28 days.
Substrate specificity determinants of human acetylcholinesterase (HuAChE) were identified by combination of molecular modeling and kinetic studies with enzymes mutated in residues Trp-86, Trp-286, Phe-295, Phe-297, Tyr-337, and Phe-338. The substitution of Trp-86 by alanine resulted in a 660-fold decrease in affinity for acetythiocholine but had no effect on affinity for the isosteric uncharged substrate (3,3-dimethylbutylthioacetate). The results demonstrate that residue Trp-86 is the anionic site which binds, through cation-pi interactions, the quaternary ammonium of choline, and that of active center inhibitors such as edrophonium. The results also suggest that in the non-covalent complex, charged and uncharged substrates with a common acyl moiety (acetyl) bind to different molecular environments. The hydrophobic site for the alcoholic portion of the covalent adduct (tetrahedral intermediate) includes residues Trp-86, Tyr-337, and Phe-338, which operate through nonpolar and/or stacking interactions, depending on the substrate. Substrates containing choline but differing in the acyl moiety (acetyl, propyl, and butyryl) revealed that residues Phe-295 and Phe-297 determine substrate specificity of the acyl pocket for the covalent adducts. Phe-295 also determines substrate specificity in the non-covalent enzyme substrate complex and thus, the HuAChE F295A mutant exhibits over 130-fold increase in the apparent bimolecular rate constant for butyrylthiocholine compared with wild type enzyme. Reactivity toward specific butyrylcholinesterase inhibitors is similarly dependent on the nature of residues at positions 295 and 297. Amino acid Trp-286 at the rim of the active site "gorge" and Trp-86, in the active center, are essential elements in the mechanism of inhibition by propidium, a peripheral anionic site ligand. Molecular modeling and kinetic data suggest that a cross-talk between Trp-286 and Trp-86 can result in reorientation of Trp-86 which may then interfere with stabilization of substrate enzyme complexes. It is proposed that the conformational flexibility of aromatic residues generates a plasticity in the active center that contributes to the high efficiency of AChE and its ability to respond to external stimuli.
Recombinant human acetylcholinesterase (HuAChE) and selected mutants (E202Q, Y337A, E450A) were studied with respect to catalytic activity towards charged and noncharged substrates, phosphylation with organophosphorus (OP) inhibitors and subsequent aging of the OP-conjugates. Amino acid E450, unlike residues E202 and Y337, is not within interaction distance from the active center. Yet, the bimolecular rates of catalysis and phosphylation are 30-100 fold lower for both E450A and E202Q compared to Y337A or the wild type and in both mutants the resulting OP-conjugates show striking resistance to aging. It is proposed that a hydrogen bond network, that maintains the functional architecture of the active center, involving water molecules and residues E202 and E450, is responsible for the observed behaviour.
The role of N-glycosylation in the function of human acetylcholinesterase (HuAChE) was examined by site-directed mutagenesis (Asn to Gln substitution) of the three potential N-glycosylation sites Asn-265, Asn-350 and Asn-464. Analysis of HuAChE mutants, defective in a single or multiple N-glycosylation sites, by expression in transiently or stably transfected human embryonal 293 kidney cells suggests the following. (a) All three AChE glycosylation signals are utilized, but not all the secreted molecules are fully glycosylated. (b) Glycosylation at all sites is important for effective biosynthesis and secretion; extracellular AChE levels in mutants defective in one, two or all three sites amounted to 20-30%, 2-4% and about 0.5% of wild-type level respectively. (c) Some glycosylation mutants display impaired stability, as reflected by increased susceptibility to heat inactivation; substitution of Asn-464 has the most pronounced effect on thermostability. (d) Abrogation of N-glycosylation has no detectable effect on the enzyme activity of HuAChE; all glycosylation mutants, including the triple mutant, hydrolyse acetylthiocholine efficiently, displaying Km, kcat. and kcat./Km values similar to those of the wild-type enzyme. (e) In most mutants, inhibition profiles with edrophonium and bisquaternary ammonium ligands are identical with those of wild-type enzyme; the Asn-350 mutants, however, exhibit a slight decrease in their affinity towards these ligands. (f) Elimination of oligosaccharide side chains has no detectable effect on the surface-related 'peripheral-site' functions; like the wild-type enzyme, all mutants were inhibited by propidium and by increased concentrations of acetylthiocholine.
To allow for structural analysis of the human acetylcholinesterase (hAChE) subunit, a series of eukaryotic vectors was designed for efficient expression. Several eukaryotic multicistronic expression vectors were tested in various mammalian cell lines. All expression vectors contained the selectable neo gene under control of a weak promoter, while the hAChE cDNA was under control of the cytomegalovirus (CMV) immediate-early or Rous sarcoma virus long terminal repeat (RSV LTR) or simian virus 40 (SV40) early promoters. Optimal production and secretion of recombinant hAChE (rehAChE) was achieved in the embryonal kidney 293 cell line transfected either with the RSV-hAChE or with CMV-hAChE expression vectors. Clones expressing and secreting as much as 5-25 pg of enzyme per cell per 24 h were obtained without resorting to coamplification techniques or continuous maintenance of cells under selective pressure. The purified (specific activity of 6000 units per mg protein) homodimer and tetramer enzyme molecules displayed typical AChE biochemical properties: a Km value of 120 microM for acetylthiocholine; a kcat value of 3.9 x 10(5)/min, and selective by AChE-specific inhibitors. Catalytic subunit dimers (130 kDa) exhibit differential N-glycosylation patterns, and upon reduction resolve into 67- and 70-kDa monomeric subunits. These two forms appear as a single discrete 62-kDa band following deglycosylation by N-glycanase. The N-terminal amino acid sequence analysis of the purified mature enzyme suggests the existence of two alternative cleavage sites for the removal of the signal peptide, in which the 'mature' position 1 is either Ala31 or Gly33. Both of these positions conform with the consensus signal peptide recognition sequences and demonstrate bidirected processing of signal peptides on a native molecule.
Evidence for the involvement of Ser-203, His-447, and Glu-334 in the catalytic triad of human acetylcholinesterase was provided by substitution of these amino acids by alanine residues. Of 20 amino acid positions mutated so far in human acetylcholinesterase (AChE), these three were unique in abolishing detectable enzymatic activity (less than 0.0003 of wild type), yet allowing proper production, folding, and secretion. This is the first biochemical evidence for the involvement of a glutamate in a hydrolase triad (Schrag, J.D., Li, Y., Wu, M., and Cygler, M. (1991) Nature 351, 761-764), supporting the x-ray crystal structure data of the Torpedo californica acetylcholinesterase (Sussman, J.L., Harel, M., Frolow, F., Oefner, C., Goldman, A., Toker, L. and Silman, I. (1991) Science 253, 872-879). Attempts to convert the AChE triad into a Cys-His-Glu or Ser-His-Asp configuration by site-directed mutagenesis did not yield effective AChE activity. Another type of substitution, that of Asp-74 by Gly or Asn, generated an active enzyme with increased resistance to succinylcholine and dibucaine; thus mimicking in an AChE molecule the phenotype of the atypical butyrylcholinesterase natural variant (D70G mutation). Mutations of other carboxylic residues Glu-84, Asp-95, Asp-333, and Asp-349, all conserved among cholinesterases, did not result in detectable alteration in the recombinant AChE, although polypeptide productivity of the D95N mutant was considerably lower. In contrast, complete absence of secreted human AChE polypeptide was observed when Asp-175 or Asp-404 were substituted by Asn. These two aspartates are conserved in the entire cholinesterase/thyroglobulin family and appear to play a role in generating and/or maintaining the folded state of the polypeptide. The x-ray structure of the Torpedo acetylcholinesterase supports this assumption by revealing the participation of these residues in salt bridges between neighboring secondary structure elements.
Amino acids located within and around the 'active site gorge' of human acetylcholinesterase (AChE) were substituted. Replacement of W86 yielded inactive enzyme molecules, consistent with its proposed involvement in binding of the choline moiety in the active center. A decrease in affinity to propidium and a concomitant loss of substrate inhibition was observed in D74G, D74N, D74K and W286A mutants, supporting the idea that the site for substrate inhibition and the peripheral anionic site overlap. Mutations of amino acids neighboring the active center (E202, Y337 and F338) resulted in a decrease in the catalytic and the apparent bimolecular rate constants. A decrease in affinity to edrophonium was observed in D74, E202, Y337 and to a lesser extent in F338 and Y341 mutants. E202, Y337 and Y341 mutants were not inhibited efficiently by high substrate concentrations. We propose that binding of acetylcholine, on the surface of AChE, may trigger sequence of conformational changes extending from the peripheral anionic site through W286 to D74, at the entrance of the 'gorge', and down to the catalytic center (through Y341 to F338 and Y337). These changes, especially in Y337, could block the entrance/exit of the catalytic center and reduce the catalytic efficiency of AChE.
        
Title: Molecular Organization of Recombinant Human Acetylcholinesterase Velan B, Kronman C, Leitner M Ref: In Multidisciplinary approaches to cholinesterase functions - Proceedings of Fourth International Meeting on Cholinesterases, (Shafferman, A. and Velan, B., Eds) Plenum Press, New York:39, 1992 : PubMed
Title: The effect of elimination of intersubunit disulfide bonds on the activity, assembly, and secretion of recombinant human acetylcholinesterase. Expression of acetylcholinesterase Cys-580----Ala mutant Velan B, Grosfeld H, Kronman C, Leitner M, Gozes Y, Lazar A, Flashner Y, Marcus D, Cohen S, Shafferman A Ref: Journal of Biological Chemistry, 266:23977, 1991 : PubMed
Site-directed mutagenesis was used to study the cysteine residue involved in the assembly of human acetylcholinesterase (HuAChE) catalytic subunits. Substitution of the cysteine at position 580 by alanine resulted in impairment of interchain disulfide bridge formation; the mutagenized enzyme (C580A) was secreted from recombinant cells in the monomeric form and failed to assemble into dimers. The mutant monomeric HuAChE did not differ from the native oligomeric enzyme neither in rate of catalysis nor in affinity to acetylthiocholine. Mutant monomers were also shown to retain the acetylcholinesterase characteristic sensitivity to high substrate concentrations. The mutation did not seem to affect the efficiencies of either synthesis or secretion of recombinant HuAChE polypeptides, as was demonstrated in cell lines derived from human embryonic kidney (293 cells) as well as from a human neuroblastoma (SK-N-SH). Furthermore, the mutation did not lead to an increase in accumulation of intracellular HuAChE polypeptides, suggesting that export of acetylcholinesterase from cells may not be coupled to subunit assembly.
1. Coding sequences for the human acetylcholinesterase (HuAChE; EC 3.1.1.7) hydrophilic subunit were subcloned in an expression plasmid vector under the control of cytomegalovirus IE gene enhancer-promoter. The human embryonic kidney cell line 293, transiently transfected with this vector, expressed catalytically active acetylcholinesterase. 2. The recombinant gene product exhibits biochemical traits similar to native "true" acetylcholinesterase as manifested by characteristic substrate inhibition, a Km of 117 microM toward acetylthiocholine, and a high sensitivity to the specific acetylcholinesterase inhibitor BW284C51. 3. The transiently transfected 293 cells (100 mm dish) produce in 24 hr active enzyme capable of hydrolyzing 1500 nmol acetylthiocholine per min. Eighty percent of the enzymatic activity appears in the cell growth medium as soluble acetylcholinesterase; most of the cell associated activity is confined to the cytosolic fraction requiring neither detergent nor high salt for its solubilization. 4. The active secreted recombinant enzyme appears in the monomeric, dimeric, and tetrameric globular hydrophilic molecular forms. 5. In conclusion, the catalytic subunit expressed from the hydrophilic AChE cDNA species has the inherent potential to be secreted in the soluble globular form and to generate polymorphism through self-association.