Staphylococcus saprophyticus is a uropathogenic Staphylococcus frequently isolated from young female outpatients presenting with uncomplicated urinary tract infections. We sequenced the whole genome of S. saprophyticus type strain ATCC 15305, which harbors a circular chromosome of 2,516,575 bp with 2,446 ORFs and two plasmids. Comparative genomic analyses with the strains of two other species, Staphylococcus aureus and Staphylococcus epidermidis, as well as experimental data, revealed the following characteristics of the S. saprophyticus genome. S. saprophyticus does not possess any virulence factors found in S. aureus, such as coagulase, enterotoxins, exoenzymes, and extracellular matrix-binding proteins, although it does have a remarkable paralog expansion of transport systems related to highly variable ion contents in the urinary environment. A further unique feature is that only a single ORF is predictable as a cell wall-anchored protein, and it shows positive hemagglutination and adherence to human bladder cell associated with initial colonization in the urinary tract. It also shows significantly high urease activity in S. saprophyticus. The uropathogenicity of S. saprophyticus can be attributed to its genome that is needed for its survival in the human urinary tract by means of novel cell wall-anchored adhesin and redundant uro-adaptive transport systems, together with urease.
        
Title: A 32 kb nucleotide sequence from the region of the lincomycin-resistance gene (22 degrees-25 degrees) of the Bacillus subtilis chromosome and identification of the site of the lin-2 mutation Kumano M, Tamakoshi A, Yamane K Ref: Microbiology, 143 ( Pt 8):2775, 1997 : PubMed
A 32 kb nucleotide sequence in the region of the lincomycin-resistance gene, located from 22 degrees to 25 degrees on the Bacillus subtilis chromosome, was determined. Among 32 putative ORFs identified, four [lipA for lipase, natA, natB and yzaE (renamed yccK)] have already been reported, although the functions of NatA, NatB and YccK remain to be characterized. Six putative products were found to exhibit significant similarity to known proteins in the databases, namely L-asparaginase precursor, protein aspartate phosphatase, alpha-glucosidase, two tellurite-resistance proteins and a hypothetical protein from B. subtilis. The region of the tellurite-resistance gene, consisting of seven ORFs, seems to correspond to an operon. The products of 14 ORFs exhibited considerable or limited similarity to known proteins. The sequenced region seems to be rich in membrane proteins, since at least 16 gene products appeared to contain membrane-spanning domains. The site of the lin-2 mutation (two nucleotide replacements) was mapped and identified by sequencing. This site is located between a putative promoter and the SD sequence of ImrA (yccB) [a putative repressor of the lmr operon, which consists of lmrA and lmrB (yccA)]. LmrB is a homologue of proteins involved in drug-export systems and seems likely to be the protein responsible for resistance to lincomycin.
Bacillus subtilis is the best-characterized member of the Gram-positive bacteria. Its genome of 4,214,810 base pairs comprises 4,100 protein-coding genes. Of these protein-coding genes, 53% are represented once, while a quarter of the genome corresponds to several gene families that have been greatly expanded by gene duplication, the largest family containing 77 putative ATP-binding transport proteins. In addition, a large proportion of the genetic capacity is devoted to the utilization of a variety of carbon sources, including many plant-derived molecules. The identification of five signal peptidase genes, as well as several genes for components of the secretion apparatus, is important given the capacity of Bacillus strains to secrete large amounts of industrially important enzymes. Many of the genes are involved in the synthesis of secondary metabolites, including antibiotics, that are more typically associated with Streptomyces species. The genome contains at least ten prophages or remnants of prophages, indicating that bacteriophage infection has played an important evolutionary role in horizontal gene transfer, in particular in the propagation of bacterial pathogenesis.
        
Title: The 25 degrees-36 degrees region of the Bacillus subtilis chromosome: determination of the sequence of a 146 kb segment and identification of 113 genes Yamane K, Kumano M, Kurita K Ref: Microbiology, 142 ( Pt 11):3047, 1996 : PubMed
We determined a 146 kb contiguous sequence at the 25 degrees-36 degrees region of the Bacillus subtilis chromosome containing the amyE-srfA segment. Among the 113 ORFs identified, 33 are already known. functions were assigned to 38 ORFs by a search of non-redundant protein sequence data banks and those of 16 ORFs were suggested through significant similarity with reported sequences. The amino acid sequences of 13 of the ORfs were similar to proteins of unknown function of Escherichia coli, Haemophilus influenzae and other species. We did not find similarities for 29 ORFs to any known proteins. The 146 kb region is rich in enzymes (35 ORFs) related to the metabolism of low molecular mass compounds and five genes for surfactin production occupy about 26 kb of the region.