Title: Dietary administration of probiotic Lactobacillus rhamnosus modulates the neurological toxicities of perfluorobutanesulfonate in zebrafish Liu M, Song S, Hu C, Tang L, Lam JCW, Lam PKS, Chen L Ref: Environ Pollut, 265:114832, 2020 : PubMed
Perfluorobutanesulfonate (PFBS), an aquatic pollutant of emerging concern, is found to disturb the neural signaling along gut-brain axis, whereas probiotic additives have been applied to improve neuroendocrine function of teleosts. Both PFBS and probiotics can commonly target nervous system. However, whether and how probiotic bacteria can modulate the neurotoxicities of PFBS remain not explored. It is thus necessary to elucidate the probiotic modulation of PFBS neurotoxicity, which can provide implications to the application of probiotic bacteria in aquaculture industry. In the present study, adult zebrafish were exposed to 0, 10 and 100 mug/L PFBS with or without dietary administration of probiotic Lactobacillus rhamnosus. Interaction between PFBS and probiotic along gut-brain axis was examined, covering three dominant pathways (i.e., neurotransmission, immune response and hypothalamic-pituitary-adrenal (HPA) axis). The results showed that, compared to the single effects, PFBS and probiotic coexposure significantly altered the acetylcholinesterase activity and neurotransmitter profiles in gut and brain of zebrafish, with mild effects on neuronal integrity. Neurotransmitters closely correlated reciprocally in intestines, which, however, was distinct from the correlation profile in brains. In addition, PFBS and probiotic were combined to impact brain health through absorption of bacterial lipopolysaccharides and production of inflammatory cytokines. Relative to neurotransmission and immune signaling, HPA axis was not involved in the neurotoxicological interaction between PFBS and probiotic. Furthermore, it needs to point out that interactive modes between PFBS and probiotic varied a lot, depending on exposure concentrations, sex and toxic indices. Overall, the present study provided the first evidence that probiotic supplement could dynamically modulate the neurotoxicities of PFBS in teleost.
        
Title: Acute exposure to triphenyl phosphate (TPhP) disturbs ocular development and muscular organization in zebrafish larvae Shi Q, Tsui MMP, Hu C, Lam JCW, Zhou B, Chen L Ref: Ecotoxicology & Environmental Safety, 179:119, 2019 : PubMed
Triphenyl phosphate (TPhP) is an organophosphate flame retardant that is frequently detected in the environments. TPhP exposure is known to cause developmental toxicity. However, the underlying molecular mechanisms remain underestimated. In the present study, zebrafish embryos were acutely exposed to 0, 4 and 100mug/L TPhP until 144h post-fertilization. Profiles of differentially expressed proteins were constructed using a shotgun proteomic. With the input of differential proteins, principal component analysis suggested different protein expression profiles for 4 and 100mug/L TPhP. Gene ontology and KEGG pathway analyses further found that effects of TPhP at 4mug/L targeted phagosome and lysosome activity, while 100mug/L TPhP mainly affected carbohydrate metabolism, muscular contraction and phagosome. Based on proteomic data, diverse bioassays were employed to ascertain the effects of TPhP on specific proteins and pathways. At gene and protein levels, expressions of critical visual proteins were significantly changed by TPhP exposure, including retinoschisin 1a, opsins and crystallins, implying the impairment of ocular development and function. TPhP exposure at 100mug/L also altered the abundances of diverse muscular proteins and disordered the assembly of muscle fibers. Effects of TPhP on visual development and motor activity may be combined to disturb larval swimming behavior. In summary, current results provided mechanistic clues to the developmental toxicities of TPhP. Future works are inspired to broaden the toxicological knowledge of TPhP based on current proteomic results.