Peptide metabolism is a complex process that involves many proteins working in concert. Mass spectrometry-based global peptide profiling of mice lacking dipeptidyl peptidase 4 (DPP4) identified endogenous DPP4 substrates and revealed an unrecognized pathway during proline peptide catabolism that interlinks aminopeptidase and DPP4 activities. Together, these studies elucidate specific aspects of DPP4-regulated metabolism and, more generally, highlight the utility of global peptide profiling for studying peptide metabolism in vivo.
        
Title: The 47kDa Akt substrate associates with phosphodiesterase 3B and regulates its level in adipocytes Chavez JA, Gridley S, Sano H, Lane WS, Lienhard GE Ref: Biochemical & Biophysical Research Communications, 342:1218, 2006 : PubMed
We have previously described a novel putative 47kDa substrate for the protein kinase Akt (designated AS47) in 3T3-L1 adipocytes. In the present study, we have found by co-immunoprecipitation that AS47 was associated with cyclic nucleotide phosphodiesterase 3B (PDE3B) in lysates of 3T3-L1 adipocytes. The patterns of expression of AS47 and PDE3B upon 3T3-L1 adipocyte differentiation, among mouse tissues, and in adipocytes with and without the transcription factor C/EBPalpha were virtually coincident. Partial knockdown of AS47 in 3T3-L1 adipocytes with shRNA resulted in a similar reduction in PDE3B protein. These results indicate that AS47 exists in a complex with PDE3B in adipocytes and that the amount of AS47 protein regulates the amount of PDE3B.
Akt is a key insulin-activated protein kinase. We searched for Akt substrates in 3T3-L1 adipocytes by means of immunoprecipitation with an Akt phosphomotif-specific antibody (PAS antibody). Four insulin-elicited phosphoproteins were isolated and identified by mass spectrometry. The identity of each protein was established by isolating the protein from lysates of untreated and insulin-treated adipocytes with an antibody specific for the protein and showing that the PAS antibody reacted only with the protein in the immunoprecipitate from insulin-treated cells. These proteins have sizes of 47, 75, 105, and 250 kDa on SDS PAGE, and have been designated pp47, 75, 105, and 250. The effect of inhibitors on the phosphorylation of the proteins, the identified sites of phosphorylation, and in vitro phosphorylation by recombinant Akt further indicated that pp47, 105, and 250 are likely to be Akt substrates, whereas pp75 may not be. pp47 and 105 are novel proteins with no known or predicted function. pp75 was previously found as a protein that associated with the colony-stimulating factor receptor, designated as Fms-interacting protein. pp250 is a novel protein with a predicted GTPase activating protein (GAP) domain for Rheb and/or Rap at its carboxy terminus. The subcellular and tissue distributions of the four proteins were determined.
        
Title: PHA synthase from chromatium vinosum: cysteine 149 is involved in covalent catalysis Muh U, Sinskey AJ, Kirby DP, Lane WS, Stubbe J Ref: Biochemistry, 38:826, 1999 : PubMed
Polyhydroxyalkanoate synthase (PHA) from Chromatium vinosum catalyzes the conversion of 3-hydroxybutyryl-CoA (HB-CoA) to polyhydroxybutyrate (PHB) and CoA. The synthase is composed of a approximately 1:1 mixture of two subunits, PhaC and PhaE. Size-exclusion chromatography indicates that in solution PhaC and PhaE exist as large molecular weight aggregates. The holo-enzyme, PhaEC, has a specific activity of 150 units/mg. Each subunit was cloned, expressed, and purified as a (His)6-tagged construct. The PhaC-(His)6 protein catalyzed polymerization with a specific activity of 0.9 unit/mg; the PhaE-(His)6 protein was inactive (specific activity <0.001 unit/mg). Addition of PhaE-(His)6 to PhaC-(His)6 increased the activity several 100-fold. To investigate the priming step of the polymerization process, the PhaEC was incubated with a trimer of HB-CoA in which the terminal hydroxyl was replaced with tritium ([3H]-sT-CoA). After Sephadex G50 chromatography, the synthase contained approximately 0.25 equiv of the labile label per PhaC. Incubation of [3H]-sT-synthase with HB-CoA resulted in production of [3H]-polymer. Digestion of [3H]-sT-synthase with trypsin and HPLC analysis resulted in isolation of three labeled peptides. Sequencing by ion trap mass spectrometry showed that they were identical and that they each contained an altered cysteine (C149). One peptide contained the [3H]-sT while the other two contained, in addition to the [3H]-sT, one and two additional monomeric HBs, respectively. Mutation of C149 to alanine gave inactive synthase. The remaining two cysteines of PhaC, 292 and 130, were also mutated to alanine. The former had wild-type (wt) activity, while the latter had 0.004 wt % activity and was capable of making polymer. A mechanism is proposed in which PhaC contains all the elements essential for catalysis and the polymerization proceeds by covalent catalysis using C149 and potentially C130.
        
Title: A protein phosphatase methylesterase (PME-1) is one of several novel proteins stably associating with two inactive mutants of protein phosphatase 2A Ogris E, Du X, Nelson KC, Mak EK, Yu XX, Lane WS, Pallas DC Ref: Journal of Biological Chemistry, 274:14382, 1999 : PubMed
Carboxymethylation of proteins is a highly conserved means of regulation in eukaryotic cells. The protein phosphatase 2A (PP2A) catalytic (C) subunit is reversibly methylated at its carboxyl terminus by specific methyltransferase and methylesterase enzymes which have been purified, but not cloned. Carboxymethylation affects PP2A activity and varies during the cell cycle. Here, we report that substitution of glutamine for either of two putative active site histidines in the PP2A C subunit results in inactivation of PP2A and formation of stable complexes between PP2A and several cellular proteins. One of these cellular proteins, herein named protein phosphatase methylesterase-1 (PME-1), was purified and microsequenced, and its cDNA was cloned. PME-1 is conserved from yeast to human and contains a motif found in lipases having a catalytic triad-activated serine as their active site nucleophile. Bacterially expressed PME-1 demethylated PP2A C subunit in vitro, and okadaic acid, a known inhibitor of the PP2A methylesterase, inhibited this reaction. To our knowledge, PME-1 represents the first mammalian protein methylesterase to be cloned. Several lines of evidence indicate that, although there appears to be a role for C subunit carboxyl-terminal amino acids in PME-1 binding, amino acids other than those at the extreme carboxyl terminus of the C subunit also play an important role in PME-1 binding to a catalytically inactive mutant.
        
Title: Didemnin binds to the protein palmitoyl thioesterase responsible for infantile neuronal ceroid lipofuscinosis Crews CM, Lane WS, Schreiber SL Ref: Proc Natl Acad Sci U S A, 93:4316, 1996 : PubMed
The marine natural product didemnin B, currently in clinical trials as an antitumor agent, has several potent biological activities apparently mediated by distinct mechanisms. Our initial investigation of didemnin B resulted in the discovery of its GTP-dependent binding of the translation elongation factor EF1 alpha. This finding is consistent with the protein synthesis inhibitory activity of didemnin B observed at intermediate concentrations. To begin to dissect the mechanisms involved in the cytostatic and immunosuppressive activities of didemnin B, observed at low concentrations, additional didemnin-binding proteins were sought. Here we report the purification of a 36-kDa glycosylated didemnin-binding protein from bovine brain lysate. Cloning of the human cDNA encoding this protein revealed a strong sequence similarity with palmitoyl protein thioesterase (PPT), an enzyme that removes palmitate from H-Ras and the G alpha s subunits of heterotrimeric GTP-binding proteins in vitro. Mutations in PPT have recently been shown to be responsible for infantile neuronal ceroid lipofuscinosis, which is a severe brain disorder characterized by progressive loss of brain function and early death.
Motor neurons stimulate their postsynaptic muscle targets to synthesize neurotransmitter receptors. Polypeptide signaling molecules may mediate this inductive interaction. Here we report the purification of ARIA, a protein that stimulates the synthesis of muscle acetylcholine receptors, and the isolation of ARIA cDNA. Recombinant ARIA increases acetylcholine receptor synthesis greater than 3-fold, and it induces tyrosine phosphorylation of a 185 kd muscle protein. The ARIA cDNA hybridizes with mRNAs that are expressed in the spinal cord from E4, a time prior to the onset of neuromuscular synapse formation, through adulthood. By E7, hybridizing mRNAs are concentrated in motor neurons. Chicken ARIA is homologous to the rat Neu differentiation factor and human here-gulin, ligands for the receptor tyrosine kinase encoded by the neu (c-erbB2, HER2) proto-oncogene. Our data suggest that members of the ARIA protein family promote the formation and maintenance of chemical synapses and, furthermore, that receptor tyrosine kinases play important roles in this process.