Molecular dynamics simulations have been performed on lipase B from Candida antarctica (CalB) in its native form and with one or two oxidized residues, either methionine oxidized to methionine sulfoxide, tryptophan oxidized to 5-hydroxytryptophan, or cystine oxidized to a pair of cysteic acid residues. We have analyzed how these oxidations affect the general structure of the protein as well as the local structure around the oxidized amino acid and the active site. The results indicate that the methionine and tryptophan oxidations led to rather restricted changes in the structure, whereas the oxidation of cystines, which also caused cleavage of the cystine S-S linkage, gave rise to larger changes in the protein structure. Only two oxidized residues caused significant changes in the structure of the active site, viz., those of the Cys-22/64 and Cys-216/258 pairs. Site-directed mutagenesis studies were also performed. Two variants showed a behavior similar to that of native CalB (M83I and M129L), whereas W155Q and M72S had severely decreased specific activity. M83I had a slightly higher thermostability than native CalB. No significant increase in stability toward hydrogen peroxide was observed. The same mutants were also studied by molecular dynamics. Even though no significant increase in stability toward hydrogen peroxide was observed, the results from simulations and site-directed mutagenesis give some clues about the direction of further work on stabilization.
        
Title: Rational redesign of Candida antarctica lipase B for the ring opening polymerization of D,D-lactide Takwa M, Larsen MW, Hult K, Martinelle M Ref: Chem Commun (Camb), 47:7392, 2011 : PubMed
Based on molecular modelling, the enzyme Candida antarctica lipase B was redesigned as a catalyst for the ring opening polymerization of D,D-lactide. Two mutants with 90-fold increased activity as compared to the wild-type enzyme were created. In a preparative synthesis of poly(D,D-lactide) the mutants greatly improved the rate and the degree of polymerization.
A water tunnel in Candida antarctica lipase B that provides the active site with substrate water is hypothesized. A small, focused library created in order to prevent water from entering the active site through the tunnel was screened for increased transacylation over hydrolysis activity. A single mutant, S47L, in which the inner part of the tunnel was blocked, catalysed the transacylation of vinyl butyrate to 20 mM butanol 14 times faster than hydrolysis. The single mutant Q46A, which has a more open outer end of the tunnel, showed an increased hydrolysis rate and a decreased hydrolysis to transacylation ratio compared to the wild-type lipase. Mutants with a blocked tunnel could be very useful in applications in which hydrolysis is unwanted, such as the acylation of highly hydrophilic compounds in the presence of water.
        
Title: Expression of Candida antarctica lipase B in Pichia pastoris and various Escherichia coli systems Larsen MW, Bornscheuer UT, Hult K Ref: Protein Expr Purif, 62:90, 2008 : PubMed
Candida antarctica lipase B (CALB) carrying a point mutation, N74S, resulting in a non-glycosylated protein was actively expressed in Pichia pastoris yielding 44 mg/L which was similar to that of the glycosylated CALB wild type expressed in P. pastoris. Hence, the major obstacle in the Escherichia coli expression of CALB is not the lack of glycosylation. To understand and improve the expression of CALB in E. coli, a comprehensive investigation of four different systems were tested: periplasmic expression in Rosetta (DE3), cytosolic expression in Rosetta-gami 2(DE3) and Origami 2(DE3) as well as co-expression with chaperones groES and groEL in Origami B(DE3), all using the pET-22b(+) vector and the T7lac promoter. Furthermore the E. coli expression was carried out at three different temperatures (16, 25 and 37 degrees C) to optimise the expression. Periplasmic expression resulted in highest amount of active CALB of the four systems, yielding a maximum of 5.2mg/L culture at 16 degrees C, which is an improvement to previous reports. The specific activity of CALB towards tributyrin in E. coli was found to be the same for periplasmic and cytosolic expression. Active site titration showed that the CALB mutant N74S had a lower specific activity in comparison to wild type CALB regardless of expression host. The expected protein identity was confirmed by LC-ESI-MS analysis in E. coli, whereas in P. pastoris produced CALB carried four additional amino acids from an incomplete protein processing.