In Aspergillus fumigatus, the conidial surface contains dihydroxynaphthalene (DHN)-melanin. Six-clustered gene products have been identified that mediate sequential catalysis of DHN-melanin biosynthesis. Melanin thus produced is known to be a virulence factor, protecting the fungus from the host defense mechanisms. In the present study, individual deletion of the genes involved in the initial three steps of melanin biosynthesis resulted in an altered conidial surface with masked surface rodlet layer, leaky cell wall allowing the deposition of proteins on the cell surface and exposing the otherwise-masked cell wall polysaccharides at the surface. Melanin as such was immunologically inert; however, deletion mutant conidia with modified surfaces could activate human dendritic cells and the subsequent cytokine production in contrast to the wild-type conidia. Cell surface defects were rectified in the conidia mutated in downstream melanin biosynthetic pathway, and maximum immune inertness was observed upon synthesis of vermelone onward. These observations suggest that although melanin as such is an immunologically inert material, it confers virulence by facilitating proper formation of the A. fumigatus conidial surface.
Cutaneous models have proven useful in studies of the pathogenesis and treatment of Gram-positive bacterial infections. Because cutaneous invasive aspergillosis (IA) occurs in the clinical setting, we sought to develop a nonlethal murine cutaneous model of IA. We induced cutaneous IA in cyclophosphamide-treated nude BALB/c mice by subcutaneous injection of Aspergillus fumigatus conidia. Skin lesion areas correlated well with tissue fungal burdens, allowing dynamic visual monitoring of cutaneous infections. The cutaneous model accurately reflected alterations in A. fumigatus pathogenicity resulting from deletions of recognized virulence genes (pabaA, sidA, and pksP). Moreover, analysis of the roles of conidial and mycelial catalases revealed that the former is required for the initiation of cutaneous aspergillosis, whereas the latter contributes to its propagation. Finally, posaconazole treatment reduced skin lesion areas relative to those of untreated and fluconazole-treated controls. This novel cutaneous model system should be applicable to comparative studies of the pathogenesis, treatment, and tissue specificity of IA.
Aspergillus fumigatus is exceptional among microorganisms in being both a primary and opportunistic pathogen as well as a major allergen. Its conidia production is prolific, and so human respiratory tract exposure is almost constant. A. fumigatus is isolated from human habitats and vegetable compost heaps. In immunocompromised individuals, the incidence of invasive infection can be as high as 50% and the mortality rate is often about 50% (ref. 2). The interaction of A. fumigatus and other airborne fungi with the immune system is increasingly linked to severe asthma and sinusitis. Although the burden of invasive disease caused by A. fumigatus is substantial, the basic biology of the organism is mostly obscure. Here we show the complete 29.4-megabase genome sequence of the clinical isolate Af293, which consists of eight chromosomes containing 9,926 predicted genes. Microarray analysis revealed temperature-dependent expression of distinct sets of genes, as well as 700 A. fumigatus genes not present or significantly diverged in the closely related sexual species Neosartorya fischeri, many of which may have roles in the pathogenicity phenotype. The Af293 genome sequence provides an unparalleled resource for the future understanding of this remarkable fungus.
A novel dipeptidyl-peptidase (DPP V) was purified from the culture medium of Aspergillus fumigatus. This is the first report of a secreted dipeptidyl-peptidase. The enzyme had a molecular mass of 88 kDa and contained approximately 9 kDa of N-linked carbohydrate. The expression and secretion of dipeptidyl-peptidase varied with the growth conditions; maximal intra- and extracellular levels were detected when the culture medium contained only proteins or protein hydrolysates in the absence of sugars. The gene of DPP V was cloned and showed significant sequence homology to other eukaryotic dipeptidyl-peptidase genes. Unlike the other dipeptidyl-peptidases, which are all intracellular, DPP V contained a signal peptide. Like the genes of other dipeptidyl-peptidases, that of DPP V displayed the consensus sequences of the catalytic site of the nonclassical serine proteases. The biochemical properties of native and recombinant DPP V obtained in Pichia pastoris were unique and were characterized by a substrate specificity limited to the hydrolysis of X-Ala, His-Ser, and Ser-Tyr dipeptides at a neutral pH optimum. In addition, we showed that DPP V is identical to one of the two major antigens used for the diagnosis of aspergillosis.
A dipeptidyl-peptidase IV was purified from the culture medium of the human-pathogenic fungus Aspergillus fumigatus. The enzyme has an apparent molecular mass of 95 kDa and contained approximately 10 kDa of N-linked carbohydrate. This glycoprotein is antigenic and has all characteristics of the class IV dipeptidyl-peptidases: removal of Xaa-Pro and to a lesser extent Xaa-Ala dipeptides from the N termini of peptides, including bioactive peptides such as neuropeptide Y, [des-Arg1] bradykinin, and glucagon-like peptide 1, activity at neutral pH, and presence in the amino acid sequence of the Gly-X-Ser-X-Gly consensus motif of the serine-hydrolases and the putative catalytic triad (Ser613, Asp690, His725) of the dipeptidyl-peptidases. Moreover, the last 200 amino acids displayed 60 to 65% similarity with the other dipeptidyl-peptidases IV from rat, mouse, human, and yeast. However, unlike the other dipeptidyl-peptidases, the dipeptidyl-peptidase IV of A. fumigatus is a secreted enzyme with a cleavable signal peptide. Expression of a recombinant dipeptidyl-peptidase IV of A. fumigatus has been attained in the yeast Pichia pastoris.