A new series of eight multifunctional thalidomide-donepezil hybrids were synthesized based on the multi-target-directed ligand strategy and evaluated as potential neuroprotective, cholinesterase inhibitors and anti-neuroinflammatory agents against neurodegenerative diseases. A molecular hybridization approach was used for structural design by combining the N-benzylpiperidine pharmacophore of donepezil and the isoindoline-1,3-dione fragment from the thalidomide structure. The most promising compound, PQM-189 (3g), showed good AChE inhibitory activity with an IC(50) value of 3.15 microM, which was predicted by docking studies as interacting with the enzyme in the same orientation observed in the AChE-donepezil complex and a similar profile of interaction. Additionally, compound 3g significantly decreased iNOS and IL-1beta levels by 43% and 39%, respectively, after 24 h of incubation with lipopolysaccharide. In vivo data confirmed the ability of 3g to prevent locomotor impairment and changes in feeding behavior elicited by lipopolysaccharide. Moreover, the PAMPA assay evidenced adequate blood-brain barrier and gastrointestinal tract permeabilities with an Fa value of 69.8%. Altogether, these biological data suggest that compound 3g can treat the inflammatory process and oxidative stress resulting from the overexpression of iNOS and therefore the increase in reactive nitrogen species, and regulate the release of pro-inflammatory cytokines such as IL-1beta. In this regard, compound PQM-189 (3g) was revealed to be a promising neuroprotective and anti-neuroinflammatory agent with an innovative thalidomide-donepezil-based hybrid molecular architecture.
A new series of sixteen multifunctional N-benzyl-piperidine-aryl-acylhydrazones hybrid derivatives was synthesized and evaluated for multi-target activities related to Alzheimer's disease (AD). The molecular hybridization approach was based on the combination, in a single molecule, of the pharmacophoric N-benzyl-piperidine subunit of donepezil, the substituted hydroxy-piperidine fragment of the AChE inhibitor LASSBio-767, and an acylhydrazone linker, a privileged structure present in a number of synthetic aryl- and aryl-acylhydrazone derivatives with significant AChE and anti-inflammatory activities. Among them, compounds 4c, 4d, 4g and 4j presented the best AChE inhibitory activities, but only compounds 4c and 4g exhibited concurrent anti-inflammatory activity in vitro and in vivo, against amyloid beta oligomer (AbetaO) induced neuroinflammation. Compound 4c also showed the best in vitro and in vivo neuroprotective effects against AbetaO-induced neurodegeneration. In addition, compound 4c showed a similar binding mode to donepezil in both acetylated and free forms of AChE enzyme in molecular docking studies and did not show relevant toxic effects on in vitro and in vivo assays, with good predicted ADME parameters in silico. Overall, all these results highlighted compound 4c as a promising and innovative multi-target drug prototype candidate for AD treatment.