Title: Catalytic Features and Thermal Adaptation Mechanisms of a Deep Sea Bacterial Cutinase-Type Poly(Ethylene Terephthalate) Hydrolase Liu Y, Liu C, Liu H, Zeng Q, Tian X, Long L, Yang J Ref: Front Bioeng Biotechnol, 10:865787, 2022 : PubMed
Poly (ethylene terephthalate) (PET) plastic is chemically inert and persistent. Massive quantities of PET waste end up in landfill sites and oceans, posing major global pollution concerns. PET degrading enzymes with high efficiency provide plastic recycling and bioremediation possibilities. Here, we report a novel cutinase, MtCut with distinct catalytic behaviors, derived from the deep sea Nocardiopsaceae family strain. Biochemical analyses showed MtCut efficiently hydrolyzed PET at ambient temperatures and in an exo-type manner. The activity and stability of MtCut were enhanced by the addition of calcium ions. Notably, no hydrolysis products inhibition was observed during PET depolymerization, suggesting MtCut is a better biocatalyst when compared to other PET hydrolases. In addition, structural components associated with thermal adaptation were investigated using molecular dynamic (MD) simulations, and key regions regulating MtCut thermostability were identified. Our biochemical and structural analyses of MtCut deepen the understanding of PET hydrolysis by cutinases, and provide invaluable insights on improvement and performance engineering strategies for PET-degrading biocatalysts.
        
Title: Discovery of carbamate-based N-salicyloyl tryptamine derivatives as novel pleiotropic agents for the treatment of Alzheimer's disease Wang Y, Zhang H, Liu D, Li X, Long L, Peng Y, Qi F, Jiang W, Wang Z Ref: Bioorg Chem, 127:105993, 2022 : PubMed
In this work, based on the potential anti-AD molecule previously studied by our group, we continue to introduce different substituents at different positions to improve both drug-like properties and on target activities. 33 N-salicyloyl tryptamine-carbamate hybrids were designed, synthesized and evaluated as cholinesterase inhibitors. H327 was the most potent BChE inhibitor (eqBChE IC(50) = 0.057 +/- 0.005 microM), and showed threefold improved inhibitory potency than the positive drug rivastigmine (eqBChE IC(50) = 0.19 +/- 0.001 microM). In addition, H327 as a pseudo-irreversible BChE inhibitor was endowed with neuroprotective, antioxidative and anti-neuroinflammatory properties. Cytotoxicity and acute toxicity tests confirmed the safety of compound H327. The pharmacokinetics study showed that compound H327 had a longer T(1/2) time and higher bioavailability than the lead compound 1 g. Compound H327 was able to cross the blood-brain barrier (BBB) in vivo. Moreover, the behavioral tests showed that compound H327 could significantly improve scopolamine-induced cognitive impairment in vivo. Overall, these results demonstrated that compound H327 is a promising multi-target agent for the treatment of AD.
Due to the hugely important roles of neurotransmitter acetylcholine (ACh) and amyloid-beta (Abeta) in the pathogenesis of Alzheimer's disease (AD), the development of multi-target directed ligands (MTDLs) focused on cholinesterase (ChE) and Abeta becomes one of the most attractive strategies for combating AD. To date, numerous preclinical studies toward multifunctional conjugates bearing ChE inhibition and anti-Abeta aggregation have been reported. Noteworthily, most of the reported multifunctional cholinesterase inhibitors are carbamate-based compounds due to the initial properties of carbamate moiety. However, because their easy hydrolysis in vivo and the instability of the compound-enzyme conjugate, the mechanism of action of these compounds is rare. Thus, non-carbamate compounds are of great need for developing novel cholinesterase inhibitors. Besides, given that Abeta accumulation begins to occur 10-15 years before AD onset, modulating Abeta is ineffective only in inhibiting its aggregation but not eliminate the already accumulated Abeta if treatment is started when the patient has been diagnosed as AD. Considering the limitation of current Abeta accumulation modulators in ameliorating cognitive deficits and ineffectiveness of ChE inhibitors in blocking disease progression, the development of a practically valuable strategy with multiple pharmaceutical properties including ChE inhibition and Abeta modulation for treating AD is indispensable. In this review, we focus on summarizing the scaffold characteristics of reported non-carbamate cholinesterase inhibitors with Abeta modulation since 2020, and understanding the ingenious multifunctional drug design ideas to accelerate the pace of obtaining more efficient anti-AD drugs in the future.
        
Title: Identification and characterization of an acetyl esterase from Paenibacillus sp. XW-6-66 and its novel function in 7-aminocephalosporanic acid deacetylation Ding J, Zhou Y, Zhu H, Deng M, Long L, Yang Y, Wu Q, Huang Z Ref: Biotechnol Lett, 41:1059, 2019 : PubMed
OBJECTIVES: To obtain a new acetyl esterase from Paenibacillus sp. XW-6-66 and apply the enzyme to 7-aminocephalosporanic acid (7-ACA) deacetylation. RESULTS: The acetyl esterase AesZY was identified from Paenibacillus sp. XW-6-66, and its enzymatic properties were investigated. With the putative catalytic triad Ser114-Asp203-His235, AesZY belongs to the Acetyl esterase (Aes) family which is included in the alpha/beta hydrolase superfamily and contains the consensus Gly-X-Ser-X-Gly motif. The maximum activity of AesZY was detected at pH 8.0 and 40 degrees C. AesZY was stable at different pH values ranging from 5.0 to 12.0, and was tolerant to several metal ions. Furthermore, the deacetylation activity of AesZY toward 7-ACA was approximately 7.5 U/mg, and the Kcat/Km value was 2.04 s(-1) mM(-1). CONCLUSIONS: Our results demonstrate the characterization of a new acetyl esterase belonging to the Aes family with potential biotechnological applications.
        
Title: Expression and characterization of two glucuronoyl esterases from Thielavia terrestris and their application in enzymatic hydrolysis of corn bran Tang J, Long L, Cao Y, Ding S Ref: Applied Microbiology & Biotechnology, 103:3037, 2019 : PubMed
The thermophilic fungus Thielavia terrestris when cultured on cellulose produces a cocktail of thermal hydrolases with potential application in saccharification of lignocellulosic biomass and other biotechnological areas. Glucuronoyl esterases are considered to play a unique role as accessory enzymes in lignocellulosic material biodegradation by cleaving the covalent ester linkage between 4-O-methyl-D-glucuronic acid (MeGlcA) and lignin in lignin-carbohydrate complexes (LCCs). Two glucuronoyl esterases from T. terrestris named TtGE1 and TtGE2 were expressed in Pichia pastoris. Both esterases displayed features of thermophilic enzymes, with the optimal temperature at 45 degrees C and 55 degrees C. TtGE1 and TtGE2 exhibited activity towards methyl (4-nitrophenyl beta-D-glucopyranosid) uronate (Me-GlcA-pNP) but no catalytic activity to benzyl-D-glucuronate (BnzGlcA), indicating the difference in substrate specificity from previously studied fungal GEs. A substantial increase in the release of monomeric sugars and glucuronic acid from autohydrolysis of corn bran was observed by the supplementing TtGEs into commercial xylanase; the results clearly demonstrated that the TtGEs played a significant role in this degradation process. This research on TtGEs enriches our knowledge of this novel class of fungal GEs. These newly characterized TtGEs could be used as promising accessory enzymes to improve the hydrolysis efficiency of commercial enzymes in saccharification of lignocellulosic materials due to their thermophilic characteristics.
Over 200 genomes of streptomycete strains that were isolated from various environments are available from the NCBI. However, little is known about the characteristics that are linked to marine adaptation in marine-derived streptomycetes. The particularity and complexity of the marine environment suggest that marine streptomycetes are genetically diverse. Here, we sequenced nine strains from the Streptomyces genus that were isolated from different longitudes, latitudes, and depths of the South China Sea. Then we compared these strains to 22 NCBI downloaded streptomycete strains. Thirty-one streptomycete strains are clearly grouped into a marine-derived subgroup and multiple source subgroup-based phylogenetic tree. The phylogenetic analyses have revealed the dynamic process underlying streptomycete genome evolution, and lateral gene transfer is an important driving force during the process. Pan-genomics analyses have revealed that streptomycetes have an open pan-genome, which reflects the diversity of these streptomycetes and guarantees the species a quick and economical response to diverse environments. Functional and comparative genomics analyses indicate that the marine-derived streptomycetes subgroup possesses some common characteristics of marine adaptation. Our findings have expanded our knowledge of how ocean isolates of streptomycete strains adapt to marine environments. The availability of streptomycete genomes from the South China Sea will be beneficial for further analysis on marine streptomycetes and will enrich the South China Sea's genetic data sources.
Ants have evolved very complex societies and are key ecosystem members. Some ants, such as the fire ant Solenopsis invicta, are also major pests. Here, we present a draft genome of S. invicta, assembled from Roche 454 and Illumina sequencing reads obtained from a focal haploid male and his brothers. We used comparative genomic methods to obtain insight into the unique features of the S. invicta genome. For example, we found that this genome harbors four adjacent copies of vitellogenin. A phylogenetic analysis revealed that an ancestral vitellogenin gene first underwent a duplication that was followed by possibly independent duplications of each of the daughter vitellogenins. The vitellogenin genes have undergone subfunctionalization with queen- and worker-specific expression, possibly reflecting differential selection acting on the queen and worker castes. Additionally, we identified more than 400 putative olfactory receptors of which at least 297 are intact. This represents the largest repertoire reported so far in insects. S. invicta also harbors an expansion of a specific family of lipid-processing genes, two putative orthologs to the transformer/feminizer sex differentiation gene, a functional DNA methylation system, and a single putative telomerase ortholog. EST data indicate that this S. invicta telomerase ortholog has at least four spliceforms that differ in their use of two sets of mutually exclusive exons. Some of these and other unique aspects of the fire ant genome are likely linked to the complex social behavior of this species.