Luo ChunyuanDept of Structural and Molecular Biology; Division of Bacterial and Rickettsial Diseases; Walter Reed Army Institute of Research; Silver Spring; MD 20910-7500 USAPhone : Fax :
Ustilaginoidea virens, causing rice false smut (RFS) is an economically important ascomycetous fungal pathogen distributed in rice-growing regions worldwide. Here, we identified a novel transcription factor UvCGBP1 (Cutinase G-box binding protein) from this fungus, which is unique to ascomycetes. Deletion of UvCGBP1 affected development and virulence of U. virens. A total of 865 downstream target genes of UvCGBP1 was identified using ChIP-seq and the most significant KEGG enriched functional pathway was the MAPK signaling pathway. Approximately 36% of target genes contain the AGGGG (G-box) motif in their promoter. Among the targets, deletion of UvCGBP1 affected transcriptional and translational levels of UvPmk1 and UvSlt2, both of which were important in virulence. ChIP-qPCR, yeast one-hybrid and EMSA confirmed that UvCGBP1 can bind the promoter of UvPmk1 or UvSlt2. Overexpression of UvPmk1 in the deltaUvCGBP1-33 mutant restored partially its virulence and hyphae growth, indicating that UvCGBP1 could function via the MAPK pathway to regulate fungal virulence. Taken together, this study uncovered a novel regulatory mechanism of fungal virulence linking the MAPK pathway mediated by a G-box binding transcription factor, UvCGBP1.
        
Title: Discovery of novel reversible monoacylglycerol lipase inhibitors via docking-based virtual screening Xiong F, Ding X, Zhang H, Luo X, Chen K, Jiang H, Luo C, Xu H Ref: Bioorganic & Medicinal Chemistry Lett, :127986, 2021 : PubMed
Monoacylglycerol lipase (MAGL) is the major enzyme that catalyzes the hydrolysis of monoacylglycerols (MAGs). MAGL is responsible for degrading 2-arachidonoylglycerol (2-AG) to arachidonic acid (AA) and glycerol in the brain and specific tissues. The inhibition of MAGL could attenuate the inflammatory response. Here, we report a series of reversible non-covalent MAGL inhibitors via virtual screening combined with biochemical analysis. The hit, DC630-8 showed low-micromolar activity against MAGL in vitro, and exhibited significant anti-inflammatory effects.
        
Title: Adipose triglyceride lipase promotes the proliferation of colorectal cancer cells via enhancing the lipolytic pathway Yin H, Li W, Mo L, Deng S, Lin W, Ma C, Luo Z, Luo C, Hong H Ref: J Cell Mol Med, :, 2021 : PubMed
Abnormal lipid metabolism is the sign of tumour cells. Previous researches have revealed that the lipolytic pathway may contribute to the progression of colorectal cancer (CRC). However, adipose triglyceride lipase (ATGL) role in CRC cells remains unclear. Here, we find that elevated ATGL positively correlates with CRC clinical stages and negatively associates with overall survival. Overexpression of ATGL significantly promotes CRC cell proliferation, while knockdown of ATGL inhibits the proliferation and promotes the apoptosis of CRC cells in vitro. Moreover, in vivo experiments, ATGL promotes the growth of CRC cells. Mechanistically, ATGL enhances the carcinogenic function of CRC cells via promoting sphingolipid metabolism and CoA biosynthesis pathway-related gene levels by degrading triglycerides, which provides adequate nutrition for the progression of CRC. Our researches clarify for the first time that ATGL is a novel oncogene in CRC and may provide an important prognostic factor and therapeutic target for CRC.
Hydroxynitrile lyases (HNL's) belonging to the alpha/beta-hydrolase-fold superfamily evolved from esterases approximately 100 million years ago. Reconstruction of an ancestral hydroxynitrile lyase in the alpha/beta-hydrolase fold superfamily yielded a catalytically active hydroxynitrile lyase, HNL1. Several properties of HNL1 differ from the modern HNL from rubber tree (HbHNL). HNL1 favors larger substrates as compared to HbHNL, is two-fold more catalytically promiscuous for ester hydrolysis (p-nitrophenyl acetate) as compared to mandelonitrile cleavage, and resists irreversible heat inactivation to 35 degrees C higher than for HbHNL. We hypothesized that the x-ray crystal structure of HNL1 may reveal the molecular basis for the differences in these properties. The x-ray crystal structure solved to 1.96-A resolution shows the expected alpha/beta-hydrolase fold, but a 60% larger active site as compared to HbHNL. This larger active site echoes its evolution from esterases since related esterase SABP2 from tobacco also has a 38% larger active site than HbHNL. The larger active site in HNL1 likely accounts for its ability to accept larger hydroxynitrile substrates. Site-directed mutagenesis of HbHNL to expand the active site increased its promiscuous esterase activity 50-fold, consistent with the larger active site in HNL1 being the primary cause of its promiscuous esterase activity. Urea-induced unfolding of HNL1 indicates that it unfolds less completely than HbHNL (m-value = 0.63 for HNL1 vs 0.93 kcal/mol.M for HbHNL), which may account for the ability of HNL1 to better resist irreversible inactivation upon heating. The structure of HNL1 shows changes in hydrogen bond networks that may stabilize regions of the folded structure.
        
Title: Monitoring insecticide resistance and diagnostics of resistance mechanisms in Bemisia tabaci Mediterranean (Q biotype) in China Wang R, Che W, Wang J, Luo C Ref: Pestic Biochem Physiol, 163:117, 2020 : PubMed
Bemisia tabaci is one of notorious agricultural insect pests in China, and the strategies of management largely depend on application of insecticides. In order to assess levels of resistance in field populations of B. tabaci to six insecticides including abamectin, cyantraniliprole, pymetrozine, imidacloprid, chlorpyrifos and bifenthrin, we monitored the susceptibility to all tested insecticides in five field populations across China and the results indicated that field populations of B. tabaci have developed various levels of resistance to each chemical agent. Furthermore, para-type voltage gated sodium channel mutations (L925I and T929V) and acetylcholinesterase ace1 mutation (F331W) were confirmed, and expression levels of CYP6CM1, CYP4C64, GSTd7 and ABCG3 were detected for investigating mechanisms of imidacloprid resistance in the five field-collected populations. The results showed that, in all tested populations, frequencies of F331W were 100%, and the frequencies of the L925I and T929V were in the range of 28.5 to 47.0% and 11.0 to 53.5%, respectively. Moreover, CYP6CM1 and CYP4C64 were significantly overexpressed in two tested populations, respectively, and GSTd7 was significantly overexpressed in one population. No overexpression of ABCG3 was observed in all the populations. Above results provided valuable insight into the current status of insecticide resistance and could be contributed to design strategies of management for B. tabaci.
        
Title: Elevated Human Dipeptidyl Peptidase 4 Expression Reduces the Susceptibility of hDPP4 Transgenic Mice to Middle East Respiratory Syndrome Coronavirus Infection and Disease Algaissi A, Agrawal AS, Han S, Peng BH, Luo C, Li F, Chan TS, Couch RB, Tseng CK Ref: J Infect Dis, 219:829, 2019 : PubMed
BACKGROUND: The ongoing Middle East respiratory syndrome coronavirus (MERS-CoV) infections pose threats to public health worldwide, making an understanding of MERS pathogenesis and development of effective medical countermeasures (MCMs) urgent. METHODS: We used homozygous (+/+) and heterozygous (+/-) human dipeptidyl peptidase 4 (hDPP4) transgenic mice to study the effect of hDPP4 on MERS-CoV infection. Specifically, we determined values of 50% lethal dose (LD50) of MERS-CoV for the 2 strains of mice, compared and correlated their levels of soluble (s)hDPP4 expression to susceptibility, and explored recombinant (r)shDPP4 as an effective MCM for MERS infection. RESULTS: hDPP4+/+ mice were unexpectedly more resistant than hDPP4+/- mice to MERS-CoV infection, as judged by increased LD50, reduced lung viral infection, attenuated morbidity and mortality, and reduced histopathology. Additionally, the resistance to MERS-CoV infection directly correlated with increased serum shDPP4 and serum virus neutralizing activity. Finally, administration of rshDPP4 led to reduced lung virus titer and histopathology. CONCLUSIONS: Our studies suggest that the serum shDPP4 levels play a role in MERS pathogenesis and demonstrate a potential of rshDPP4 as a treatment option for MERS. Additionally, it offers a validated pair of Tg mice strains for characterizing the effect of shDPP4 on MERS pathogenesis.
        
Title: Probing the role of amino acids in oxime-mediated reactivation of nerve agent-inhibited human acetylcholinesterase Chambers C, Luo C, Tong M, Yang Y, Saxena A Ref: Toxicol In Vitro, 29:408, 2015 : PubMed
In this study, we employed site-directed mutagenesis to understand the role of amino acids in the gorge in oxime-induced reactivation of nerve agent-inhibited human (Hu) acetylcholinesterase (AChE). The organophosphorus (OP) nerve agents studied included GA (tabun), GB (sarin), GF (cyclosarin), VX, and VR. The kinetics of reactivation were examined using both the mono-pyridinium oxime 2-PAM and bis-pyridinium oximes MMB4, HI-6, and HLo-7. The second-order reactivation rate constants were used to compare reactivation of nerve agent-inhibited wild-type (WT) and mutant enzymes. Residues including Y72, Y124 and W286 were found to play important roles in reactivation by bis-pyridinium, but not by mono-pyridinium oximes. Residue Y124 also was found to play a key role in reactivation by HI-6 and HLo-7, while E202 was important for reactivation by all oximes. Residue substitutions of F295 by Leu and Y337 by Ala showed enhanced reactivation by bis-pyridinium oximes MMB4, HI-6, and HLo-7, possibly by providing more accessibility of the OP moiety associated at the active-site serine to the oxime. These results are similar to those observed previously with bovine AChE and demonstrate that there is significant similarity between human and bovine AChEs with regard to oxime reactivation.
Ustilaginoidea virens (Cooke) Takah is an ascomycetous fungus that causes rice false smut, a devastating emerging disease worldwide. Here we report a 39.4 Mb draft genome sequence of U. virens that encodes 8,426 predicted genes. The genome has ~25% repetitive sequences that have been affected by repeat-induced point mutations. Evolutionarily, U. virens is close to the entomopathogenic Metarhizium spp., suggesting potential host jumping across kingdoms. U. virens possesses reduced gene inventories for polysaccharide degradation, nutrient uptake and secondary metabolism, which may result from adaptations to the specific floret infection and biotrophic lifestyles. Consistent with their potential roles in pathogenicity, genes for secreted proteins and secondary metabolism and the pathogen-host interaction database genes are highly enriched in the transcriptome during early infection. We further show that 18 candidate effectors can suppress plant hypersensitive responses. Together, our analyses offer new insights into molecular mechanisms of evolution, biotrophy and pathogenesis of U. virens.
        
Title: Effect of polyethylene glycol conjugation on the circulatory stability of plasma-derived human butyrylcholinesterase in mice Sun W, Luo C, Tipparaju P, Doctor BP, Saxena A Ref: Chemico-Biological Interactions, 203:172, 2013 : PubMed
Exogenously administered human serum butyrylcholinesterase (Hu BChE) was demonstrated to function as a bioscavenger of highly toxic organophosphorus (OP) compounds in several animal species. Since the enzyme is isolated from human serum, it is currently the most suitable pretreatment for human use. A dose of 200-300mg/70kg human adult is projected to provide protection from 2 X LD50 of soman. Due to the limited supply of Hu BChE, strategies aimed at reducing the dose of enzyme are being explored. In this study, we investigated the effect of modification with polyethylene glycol (PEG) on the in vivo stability of Hu BChE. Mice were given two injections of either Hu BChE or Hu BChE modified with PEG-5K or PEG-20K, six weeks apart. Pharmacokinetic parameters, such as mean residence time (MRT), maximal concentration (Cmax), elimination half-life (T1/2), and area under the plasma concentration time curve extrapolated to infinity (AUC), were determined. For the first injection, values for MRT, T1/2, Cmax, and AUC for PEG-5K-Hu BChE and PEG-20K-Hu BChE were similar to those for Hu BChE. These values for the second injection of Hu BChE as well as PEG-Hu BChEs were lower as compared to those for the first injections, likely due to antibody-mediated clearance.
        
Title: Genome sequence of the plant growth-promoting rhizobacterium Bacillus sp. strain 916 Wang X, Luo C, Chen Z Ref: Journal of Bacteriology, 194:5467, 2012 : PubMed
Bacillus sp. strain 916, isolated from the soil, showed strong activity against Rhizoctonia solani. Here, we present the high-quality draft genome sequence of Bacillus sp. strain 916. Its 3.9-Mb genome reveals a number of genes whose products are possibly involved in promotion of plant growth or antibiosis.
        
Title: Theoretical study of the mechanism of proton transfer in the esterase EstB from Burkholderia gladioli Chen L, Kong X, Liang Z, Ye F, Yu K, Dai W, Wu D, Luo C, Jiang H Ref: J Phys Chem B, 115:13019, 2011 : PubMed
Esterase EstB from Burkholderia gladioli belongs to a novel class of esterases homologous to penicillin binding proteins, notably DD-peptidase and class C beta-lactamases. It can cleave the side chain acetyl ester group from cephalosporins leaving the beta-lactam ring intact, which is a feature of relevance to industrial biocatalytic applications in the production of semisynthetic cephalosporin derivatives. Due to its important role as a potential biocatalyst in industry, the significance of EstB has been greatly appreciated. However, the molecular basis for those residues involving catalysis of EstB remains elusive. By analyzing the crystal structure of EstB, we identified a conserved water molecule in active-site cavity which might mediate an intramolecular proton transfer (PT) from Lys78 to Asp186 via Tyr133. Then a combined computational approach including molecular dynamics (MD) simulations and quantum mechanics/molecular mechanics (QM/MM) calculations was employed to explore this presumable PT mode in the native enzyme. A 30 ns MD simulation of the enzyme highlights the conserved H-bond network involving Lys78, Tyr133, Asp186, and the conserved water molecule in the active site. In particular, the water molecule did not exchange with bulk solvent, indicating its structural and functional relevance. The energy profile calculated by QM/MM approach displayed a notably low PT barrier (2.2 kcal/mol) and a dramatic energy difference (14.1 kcal/mol) in reactants versus immediate products, which implies that the proposed proton shuttle is concerted and energetically favorable. Our studies offer a reasonable pathway to yield a free base by assisting Lys78 deprotonation, thereby paving the way for future studies on Ser75 activation that is a critical step in catalysis by EstB, as well as biocatalyst development by rational attempts. This PT mode would also afford clues for the forthcoming investigation on acyltransferase LovD that is homologous to EstB.
        
Title: Mechanism for potent reactivation ability of H oximes analyzed by reactivation kinetic studies with cholinesterases from different species Luo C, Chambers C, Yang Y, Saxena A Ref: Chemico-Biological Interactions, 187:185, 2010 : PubMed
Oxime-induced reactivation of organophosphorus (OP) nerve agent-inhibited acetylcholinesterase (AChE) is a very important step for the treatment of nerve agent toxicity. Therefore, extensive efforts are being made to develop more efficient and broad-spectrum oximes to replace the currently used oximes 2-PAM or obidoxime. In the 1970s and 1980s, several H oximes (such as HI-6 and HLo-7) were found to be very potent reactivators of non-aged soman-inhibited AChE. Later these oximes were shown to rapidly reactivate GF- and VR-inhibited AChE as well. However, the mechanism for the high potency of these H oximes is still unknown. In this study, the relationship between the reactivation rate constant of nerve agent-inhibited rhesus monkey AChE, human AChE and guinea pig AChE and the size of the alkoxyl (OR) group of nerve agents was analyzed. Results demonstrate that for nerve agent-inhibited rhesus monkey and human AChEs, reactivation by H oximes accelerated as the size of the OR group was increased. But with guinea pig AChE, reactivation by H oximes declined as the size of the OR group was increased. Reactivation kinetic study using GF- and VR-inhibited wild-type and mutant bovine AChEs has shown that mutations of Y124Q and W286A particularly reduced reactivation by these H oximes. Since these 2 amino acid residues are highly conserved in all AChEs sequenced to date, it is unlikely that the remarkable reduction observed in H oxime reactivation with guinea pig AChE is caused by a change in these two amino acid residues.
        
Title: Y124 at the peripheral anionic site is important for the reactivation of nerve agent-inhibited acetylcholinesterase by H oximes Luo C, Chambers C, Pattabiraman N, Tong M, Tipparaju P, Saxena A Ref: Biochemical Pharmacology, 80:1427, 2010 : PubMed
The toxicity of organophosphorus (OP) nerve agents is manifested through irreversible inhibition of acetylcholinesterase (AChE) at the cholinergic synapses, which stops nerve signal transmission, resulting in a cholinergic crisis and eventually death of the poisoned person. Oxime compounds used in nerve agent antidote regimen reactivate nerve agent-inhibited AChE and halt the development of this cholinergic crisis. Due to diversity in structures of OP nerve agents, none of the currently available oximes is able to reactivate AChE inhibited by different nerve agents. To understand the mechanism for the differential activities of oximes toward AChE inhibited by diverse nerve agents in order to aid the design of new broad-spectrum AChE reactivators, we undertook site-directed mutagenesis and molecular modeling studies. Recombinant wild-type and mutant bovine (Bo) AChEs were inhibited by two bulky side-chain nerve agents, GF and VR, and used for conducting reactivation kinetics with five oximes. A homology model for wild-type Bo AChE was built using the recently published crystal structure of human AChE and used to generate models of 2-PAM and HI-6 bound to the active-sites of GF- and VR-inhibited Bo AChEs before nucleophilic attack. Results revealed that the peripheral anionic site (PAS) of AChE as a whole plays a critical role in the reactivation of nerve agent-inhibited AChE by all 4 bis-pyridinium oximes examined, but not by the mono-pyridinium oxime 2-PAM. Of all the residues at the PAS, Y124 appears to be critical for the enhanced reactivation potency of H oximes.
        
Title: Demonstration of in vivo stability and lack of immunogenicity of a polyethyleneglycol-conjugated recombinant CHO-derived butyrylcholinesterase bioscavenger using a homologous macaque model Rosenberg YJ, Saxena A, Sun W, Jiang X, Chilukuri N, Luo C, Doctor BP, Lee KD Ref: Chemico-Biological Interactions, 187:279, 2010 : PubMed
Human serum and recombinant butyrylcholinesterase (rHuBChE) are the most advanced prophylactics against organophosphate (OP) toxicity due to nerve agent or insecticide exposure. For ethical reasons, such potential multi-use treatments cannot be tested in humans and will require extensive testing in animal models and the "Animal Rule" 21 (21 CFR 601.90) for regulatory approval. This will involve multiple injections of rHuBChE into heterologous animals, e.g. macaques, rodents with inevitable immunogenicity and subsequent elimination of the enzyme on repeat injections. In order to accurately assess pharmacokinetics, efficacy and safety of a candidate rBChE in an "antibody free" system, a homologous macaque (Ma) model has been developed. In these studies, macaques received single or multiple intravenous injections of native MaBChE as well as unmodified or PEG-conjugated forms of rMaBChE produced in CHO cells. Compared to the poor plasma retention of unmodified rBChE (MRT: <10h), three injections of 1.5-2.3mg/kg of PEG-conjugated tetrameric rBChE resulted in high circulatory stability (MRT: >134h) and lack of immunogenicity similar to native MaBChE. PEG-conjugation of the monomeric rMaBChE form also exhibited pharmacokinetic profiles comparable to the tetrameric form (MRT: >113h). However, despite the increased bioavailability of PEG-rBChE, antigenicity studies using sandwich ELISA showed that while macaque BChE was not immunogenic in macaques, PEGylation of rMaBChE did not prevent binding to anti-BChE antibodies, suggesting PEGylation may not be sufficient to mask non-human epitopes on rBChE. This homologous model can provide necessary preclinical protection data for the use of PEG-rHuBChE in humans and bodes well for a safe and efficacious CHO-derived rHuBChE therapeutic.
        
Title: Pharmacokinetics and immunologic consequences of repeated administrations of purified heterologous and homologous butyrylcholinesterase in mice Sun W, Luo C, Naik RS, Doctor BP, Saxena A Ref: Life Sciences, 85:657, 2009 : PubMed
AIM: To assess the consequences of repeated administrations of purified human serum butyrylcholinesterase (Hu BChE) and mouse serum (Mo) BChE into mice. MAIN METHODS: Purified Hu BChE and Mo BChE isolated from the sera of CD-1 mice were administered into Balb/c or CD-1 mice. The enzymes were delivered by i.m. injections of approximately 100U (0.15mg) on day 1 and on day 28, respectively. The effects of two injections were monitored by following blood BChE and anti-BChE IgG levels. KEY FINDINGS: Hu BChE displayed a mean residence time (MRT) of 50h, and an area under the curve (AUC) of 1220U/ml.h in Balb/c or CD-1 mice. Mo BChE exhibited an MRT of 78h and an AUC of 1815U/ml.h in Balb/c mice; the AUC increased to 2504U/ml.h in CD-1 mice. A second injection of Hu BChE in both strains exhibited a marked reduction in circulatory stability. The circulatory stability of the second injection of Mo BChE was reduced in Balb/c mice, but was almost identical to the first injection in CD-1 mice. Consistent with these observations, circulating anti-BChE IgGs were observed in mice injected with Hu BChE; low levels of anti-BChE IgGs were observed only in Balb/c mice injected with Mo BChE. No antibody response was detected in CD-1 mice following either injection of homologous Mo BChE. SIGNIFICANCE: The identical pharmacokinetic profiles and the absence of an immunologic response following a second administration of homologous BChE support the development of Hu BChE as a detoxifying drug in humans.
Bemisia tabaci (Gennadius) biotype B, called a "superbug", is one of the most harmful biotypes of this species complex worldwide. In this report, the invasive mechanism and management of B. tabaci biotype B, based on our 5-year studies, are presented. Six B. tabaci biotypes, B, Q, ZHJ1, ZHJ2, ZHJ3 and FJ1, have been identified in China. Biotype B dominates the other biotypes in many regions of the country. Genetic diversity in biotype B might be induced by host plant, geographical conditions, and/or insecticidal application. The activities of CarE (carboxylesterase) and GSTs (glutathione-S-transferase) in biotype B reared on cucumber and squash were greater than on other host plants, which might have increased its resistance to insecticides. The higher activities of detoxification enzymes in biotype B might be induced by the secondary metabolites in host plants. Higher adaptive ability of biotype B adults to adverse conditions might be linked to the expression of heat shock protein genes. The indigenous B. tabaci biotypes were displaced by the biotype B within 225 d. The asymmetric mating interactions and mutualism between biotype B and begomoviruses via its host plants speed up widespread invasion and displacement of other biotypes. B. tabaci biotype B displaced Trialeurodes vaporariorum (Westwood) after 4-7 generations under glasshouse conditions. Greater adaptive ability of the biotype B to adverse conditions and its rapid population increase might be the reasons of its successful displacement of T. vaporariorum. Greater ability of the biotype B to switch to different host plants may enrich its host plants, which might enable it to better compete with T. vaporariorum. Native predatory natural enemies possess greater ability to suppress B. tabaci under field conditions. The kairomones in the 3rd and 4th instars of biotype B may provide an important stimulus in host searching and location by its parasitoids. The present results provide useful information in explaining the mechanisms of genetic diversity, evolution and molecular eco-adaptation of biotype B. Furthermore, it provides a base for sustainable management of B. tabaci using biological and ecological measures.
        
Title: Comparison of oxime reactivation and aging of nerve agent-inhibited monkey and human acetylcholinesterases Luo C, Tong M, Maxwell DM, Saxena A Ref: Chemico-Biological Interactions, 175:261, 2008 : PubMed
Non-human primates are valuable animal models that are used for the evaluation of nerve agent toxicity as well as antidotes and results from animal experiments are extrapolated to humans. It has been demonstrated that the efficacy of an oxime primarily depends on its ability to reactivate nerve agent-inhibited acetylcholinesterase (AChE). If the in vitro oxime reactivation of nerve agent-inhibited animal AChE is similar to that of human AChE, it is likely that the results of an in vivo animal study will reliably extrapolate to humans. Therefore, the goal of this study was to compare the aging and reactivation of human and different monkey (Rhesus, Cynomolgus, and African Green) AChEs inhibited by GF, GD, and VR. The oximes examined include the traditional oxime 2-PAM, two H-oximes HI-6 and HLo-7, and the new candidate oxime MMB4. Results indicate that oxime reactivation of all three monkey AChEs was very similar to human AChE. The maximum difference in the second-order reactivation rate constant between human and three monkey AChEs or between AChEs from different monkey species was 5-fold. Aging rate constants of GF-, GD-, and VR-inhibited monkey AChEs were very similar to human AChE except for GF-inhibited monkey AChEs, which aged 2-3 times faster than the human enzyme. The results of this study suggest that all three monkey species are suitable animal models for nerve agent antidote evaluation since monkey AChEs possess similar biochemical/pharmacological properties to human AChE.
Gene-directed enzyme prodrug therapy (GDEPT) involves the treatment concept of having maximal efficacy and minimal adverse effects. Several GDEPT strategies have been developed combining cytosine deaminase and 5-fluorocytosine, cytochrome P450 2B1 and cyclophosphamide, and carboxylesterase (CES) and irinotecan in experimental models. The active forms of these prodrugs, however, are not a frontline therapy for the treatment of ovarian cancer. It would be beneficial to develop a more effective prodrug-enzyme combination for the treatment of this disease. Paclitaxel (Taxol; TAX) is currently one of the most important anti-cancer drugs in chemotherapy of ovarian cancer. One of TAX prodrugs, 2'-ethylcarbonate-linked paclitaxel (TAX-2'-Et), was generated and examined regarding its pharmacological aspects. The prodrug of TAX-2'-Et converts into active form TAX by carboxylesterase (CES). TAX-2'-Et did not exhibit polarized transport in the Caco-2 cells expressing P-glycoprotein (P-gp) in the absence or presence of verapamil which is a inhibitor of P-gp, suggesting that TAX-2'-Et is not a target of P-gp like TAX and rhodamine123. Moreover, SKOV3/TAX60 cells which are overexpressing P-gp did not also exhibit any change in cellular uptake of TAX-2'-Et regardless of the absence or presence of verapamil. Consequently, the uptake of TAX-2'-Et into the TAX-resistant cells was quantitatively similar to that internalized in the parental SKOV3 cells which are P-gp-negative. In the CES-transfected SKOV3 cells, the EC50 value of TAX (10.6 nM) was approximately 4-fold higher than that of TAX-2'-Et (2.5 nM). We herein provide evidence that TAX-2'-Et could circumvent P-gp-associated cellular efflux of TAX, suggesting that this combination therapy is a potential GDEPT strategy for ovarian cancer in the future. Finally, this review focuses on the development, application and potential of various GDEPTs for treating ovarian cancer, and the scope and progress of new GDEPTs are discussed.
        
Title: Developing procedures for the large-scale purification of human serum butyrylcholinesterase Saxena A, Luo C, Doctor BP Ref: Protein Expr Purif, 61:191, 2008 : PubMed
Human serum butyrylcholinesterase (Hu BChE) is the most viable candidate for the prophylactic treatment of organophosphate poisoning. A dose of 200 mg/70 kg is predicted to protect humans against 2x LD(50) of soman. Therefore, the aim of this study was to develop procedures for the purification of gram quantities of this enzyme from outdated human plasma or Cohn Fraction IV-4. The purification of Hu BChE was accomplished by batch adsorption on procainamide-Sepharose-CL-4B affinity gel followed by ion-exchange chromatography on a DEAE-Sepharose column. For the purification of enzyme from Cohn Fraction IV-4, it was resuspended in 25 mM sodium phosphate buffer, pH 8.0, and fat was removed by decantation, prior to batch adsorption on procainamide-Sepharose gel. In both cases, the procainamide gel was thoroughly washed with 25 mM sodium phosphate buffer, pH 8.0, containing 0.05 M NaCl, and the enzyme was eluted with the same buffer containing 0.1 M procainamide. The enzyme was dialyzed and the pH was adjusted to 4.0 before loading on the DEAE column equilibrated in sodium acetate buffer, pH 4.0. The column was thoroughly washed with 25 mM sodium phosphate buffer, pH 8.0 containing 0.05 M NaCl before elution with a gradient of 0.05-0.2M NaCl in the same buffer. The purity of the enzyme following these steps ranged from 20% to 40%. The purity of the enzyme increased to >90% by chromatography on an analytical procainamide affinity column. Results show that Cohn Fraction IV-4 is a much better source than plasma for the large-scale isolation of purified Hu BChE.
        
Title: An in vitro comparative study on the reactivation of nerve agent-inhibited guinea pig and human acetylcholinesterases by oximes Luo C, Tong M, Chilukuri N, Brecht K, Maxwell DM, Saxena A Ref: Biochemistry, 46:11771, 2007 : PubMed
The reactivation of nerve agent-inhibited acetylcholinesterase (AChE) by oxime is the most important step in the treatment of nerve agent poisoning. Since the evaluation of nerve agent antidotes cannot be conducted in humans, results from animal experiments are extrapolated to humans. Guinea pig is one of the animal models that is frequently used for conducting nerve agent antidote evaluations. Several investigations have demonstrated that the efficacy of an oxime primarily depends on its ability to reactivate nerve agent-inhibited AChE. If the in vitro oxime reactivation of nerve agent-inhibited animal AChE is similar to that of human AChE, it is likely that the results of an in vivo animal study will reliably extrapolate to humans. Therefore, the goal of this study was to compare the reactivation of guinea pig and human AChEs inhibited by six different G and V type nerve agents. Reactivation kinetic studies with five mono- and bis-pyridinium oximes showed that oxime reactivation of nerve agent-inhibited human AChE in most cases was faster than guinea pig AChE. The most significant enhancement was observed in the reactivation of human AChE inhibited by nerve agents containing bulky side chains GF, GD, and VR, by H-series oximes HLo-7, HI-6, and ICD-585. In these cases, species-related differences observed between the two AChEs, based on the second-order reactivation rate constants, were 90- to over 400-fold. On the other hand, less than 3-fold differences were observed in the rates of aging of nerve agent-inhibited guinea pig and human AChEs. These results suggest that the remarkable species-related differences observed in the reactivation of nerve agent-inhibited guinea pig and human AChEs were not due to differences in the rates of aging. These results also suggest that guinea pig may not be an appropriate animal model for the in vivo evaluation of oxime therapy.
PURPOSE: The aim of the study was to investigate whether 2'-ethylcarbonate-linked paclitaxel (TAX-2'-Et) circumvents P-glycoprotein (P-gp)-mediated cellular efflux and cytotoxicity enhanced by TAX-2'-Et activation within human culture cells transfected with a rabbit liver carboxylesterase (Ra-CES) cDNA. MATERIALS AND METHODS: TAX-2'-Et transport was characterized in a human colon carcinoma cell line (Caco-2) and paclitaxel (TAX)-resistant ovarian carcinoma cells (SKOV3/TAX60). Expression of P-gp, multidrug resistance protein (MRP) 2 and Ra-CES was detected by Western blotting. Cytotoxicity against Ra-CES-expressing cells and cellular amount of TAX produced were determined by MTT assay and using HPLC, respectively. RESULTS: Unlike rhodamine123 and TAX, TAX-2'-Et did not exhibit polarized transport in the Caco-2 cells in the absence or presence of verapamil. P-gp levels were expressed much higher in the SKOV3/ TAX60 cells than in the Caco-2 cells. MRP2 protein was not detectable in the SKOV3/TAX60 cells. Uptake by the SKOV3/TAX60 cells was similar in quantity to the amount internalized by P-gp-negative SKOV3 cells. In the SKOV3/TAX60 cells, cellular uptake of TAX-2'-Et was not altered regardless of the absence or presence of verapamil. The cytotoxicity to the untransfected SKOV3 cells induced by TAX-2'-Et was significantly lower than that induced by TAX. In the Ra-CES-expressing SKOV3 line, the EC50 value of TAX (10.6 nM) was approximately four-fold higher than that of TAX-2'-Et (2.5 nM). Transfection of Ra-CES into another TAX-resistant ovarian carcinoma cells (KOC-7c) conferred a high level of TAX-2'-Et cytotoxicity via prodrug activation. The intracellular levels of TAX produced from TAX-2'-Et in the Ra-CES-positive KOC-7c cells significantly increased compared with the levels seen in exposure of the untransfected KOC-7c cells to TAX. CONCLUSIONS: TAX-2'-Et can circumvent P-gp-associated cellular efflux of TAX. TAX-2'-Et is converted into TAX by the Ra-CES, supporting its potential use as a theoretical GDEPT strategy for cancer cells expressing high levels of P-gp. The TAX-2'-Et prodrug efficiently increased the amount of intracellular TAX, which mediates tumor cell death.
Current antidotal regimens for organophosphorus compound (OP) poisoning consist of a combination of pretreatment with a spontaneously reactivating AChE inhibitor such as pyridostigmine bromide, and postexposure therapy with anticholinergic drugs such as atropine sulfate and oximes such as 2-PAM chloride (Gray, 1984). Although these antidotal regimens are effective in preventing lethality of animals from OP poisoning, they do not prevent postexposure incapacitation, convulsions, performance deficits, or, in many cases, permanent brain damage (Dunn and Sidell, 1989). These problems stimulated the development of enzyme bioscavengers as a pretreatment to sequester highly toxic OPs before they reach their physiological targets. Several studies over the last two decades have demonstrated that exogenously administered human serum butyrylcholinesterase (Hu BChE) can be used successfully as a safe, efficacious, and single prophylactic treatment to counteract the toxicity of OPs. It also has potential use for first responders (civilians) reacting to terrorist nerve gas release, pesticide overexposure, or succinylcholine-induced apnea. A dose of 200 mg of Hu BChE in humans is envisioned as a prophylactic treatment that can protect from exposure of 2-5 x LD50 of nerve agents (Ashani, 2000).
Human butyrylcholinesterase (HuBuChE), purified from outdated human plasma, is being evaluated for efficacy against nerve agents in guinea pigs and cynomolgus monkeys. Previous studies in rodents and nonhuman primates demonstrated that pretreatment of animals with enzymes that can scavenge nerve agents could provide significant protection against behavioral and lethal effects of nerve agent intoxication. In preparation for evaluation of efficacy of HuBuChE prior to initiating an investigational new drug (IND) application, the pharmacokinetics of HuBuChE were evaluated in guinea pigs and in cynomolgus monkeys. HuBuChE was injected intramuscularly (i.m.) at two doses, and blood samples were taken to follow the time-course of HuBuChE in blood for up to 168 h after administration. In guinea pigs, the two doses of HuBuChE, 19.9 and 32.5 mg/kg, produced similar times of maximal blood concentration (T(max) of 26.0 and 26.8 h, respectively) and similar elimination half-times (t(1/2) of 64.6 and 75.5 h, respectively). Enzyme levels were still 10-fold over baseline at 72 h. Based on these data, guinea pigs were administered 150 mg/kg of enzyme i.m. and challenged at T(max). Soman or VX doses were approximately 1.5, 2.0 and 2.0 x LD50 administered subcutaneously (s.c.) in sequence at 90-120 min apart. None of the animals displayed signs of organophosphorus (OP) anticholinesterase intoxication at any of the challenge levels, and all survived for the 14-day duration of the experiment. Similar experiments were carried out with cynomolgus monkeys to determine the pharmacokinetics of HuBuChE and its efficacy against soman. The complete survival of nearly all animals tested to date, coupled with the maximal blood concentration and half-life elimination profile obtained for HuBuChE after i.m. injection, provides strong support for the continued development of HuBuChE as a product to protect against nerve agents.
Title: Human serum butyrylcholinesterase: in vitro and in vivo stability, pharmacokinetics, and safety in mice Saxena A, Sun W, Luo C, Doctor BP Ref: Chemico-Biological Interactions, 157-158:199, 2005 : PubMed
The use of exogenously administered cholinesterases (ChEs) as bioscavengers of highly toxic organophosphate (OP) nerve agents is now sufficiently well documented to make them a highly viable prophylactic treatment against this potential threat. Of the ChEs evaluated so far, human serum butyrylcholinesterase (HuBChE) is most suitable for human use. A dose of 200 mg (3 mg/kg) of HuBChE is envisioned as a prophylactic treatment in humans that can protect from an exposure of up to 2 x LD50 of soman. In addition to its use as a prophylactic for a variety of wartime scenarios, including covert actions, it also has potential use for first responders (civilians) reacting to terrorist nerve gas release. We recently, developed a procedure for the large-scale purification of HuBChE, which yielded approximately 6 g of highly purified enzyme from 120 kg of Cohn fraction IV-4. The enzyme had a specific activity of 700-750 U/mg and migrated as a single band on SDS-PAGE. To provide data for initiating an investigational new drug (IND) application for the use of this enzyme as a bioscavenger in humans, we established its pharmacokinetic properties, examined its safety in mice, and evaluated its shelf life at various temperatures. In mice administered various doses up to 90 mg/kg, enzyme activity reached peak levels in circulation at 10 and 24 h following i.p. and i.m. injections, respectively. The enzyme displayed a mean residence time (MRT) of 40-50 h, regardless of the route of administration or dose of injected enzyme. Mice were euthanized 2 weeks following enzyme administration and tissues were examined grossly or microscopically for possible toxic effects. Results suggest that HuBChE does not exhibit any toxicity in mice as measured by general observation, serum chemistry, hematology, gross or histologic tissue changes. The shelf life of this enzyme stored at 4, 25, 37, and 45 degrees C was determined in lyophilized form. The enzyme was found to be stable when stored in lyophilized form at -20, 4, 25, or 37 degrees C to date (2 years), as measured by specific activity and SDS polyacrylamide gel electrophoresis. The effect of storage on circulatory stability was determined by measuring MRT in mice; there was no change in the MRT of lyophilized enzyme stored at -20 degrees C to date (2 years). These results provide convincing data that HuBChE is a safe bioscavenger that can provide protection against all OP nerve agents. Efforts are now underway to prepare the required documentation for submission of an IND application to the United States Food and Drug Administration (USFDA).
        
Title: Two possible orientations of the HI-6 molecule in the reactivation of organophosphate-inhibited acetylcholinesterase. Luo C, Leader H, Radic Z, Maxwell DM, Taylor P, Doctor BP, Saxena A Ref: Cholinergic Mechanisms, CRC Press, :627, 2004 : PubMed
Title: Strategy for reactivation of organophosphate-inhibited human butyrylcholinesterase Luo C, Dawson M, Maxwell DM, Doctor BP, Saxena A Ref: In: Cholinesterases in the Second Millennium: Biomolecular and Pathological Aspects, (Inestrosa NC, Campos EO) P. Universidad Catolica de Chile-FONDAP Biomedicina:251 , 2004 : PubMed
Title: Poster (33) Strategy for the reactivation of organophosphate-inhibited human butyrylcholinesterase Luo C, McKissic D, Doctor BP, Saxena A Ref: In: Cholinesterases in the Second Millennium: Biomolecular and Pathological Aspects, (Inestrosa NC, Campos EO) P. Universidad Catolica de Chile-FONDAP Biomedicina:338, 2004 : PubMed
Title: Human serum butyrylcholinesterase: A future generation antidote for organophosphate chemical warfare agent toxicity . Saxena A, Luo C, Bansal R, Sun W, Clark M, Ashani Y, Ross M, Doctor BP Ref: In: Cholinesterases in the Second Millennium: Biomolecular and Pathological Aspects, (Inestrosa NC, Campos EO) P. Universidad Catolica de Chile-FONDAP Biomedicina:269 , 2004 : PubMed
Title: Poster (36) Human serum butyrylcholinesterase: a future generation antidote for organophosphate chemical warfare agent toxicity Saxena A, Luo C, Bansal R, Sun W, Clark M, Ashani Y, Ross M, Doctor BP Ref: In: Cholinesterases in the Second Millennium: Biomolecular and Pathological Aspects, (Inestrosa NC, Campos EO) P. Universidad Catolica de Chile-FONDAP Biomedicina:339, 2004 : PubMed
Title: Synthesis and evaluation of tacrine-E2020 hybrids as acetylcholinesterase inhibitors for the treatment of Alzheimer's disease Shao D, Zou C, Luo C, Tang X, Li Y Ref: Bioorganic & Medicinal Chemistry Lett, 14:4639, 2004 : PubMed
Tacrine-E2020 hybrids and some related compounds were prepared and their bioactivities on the Alzheimer's disease were assayed. The optimum hybrid inhibitor 3 is 37-fold more potent and 31-fold more selective than tacrine in vitro.
        
Title: Two possible orientations of the HI-6 molecule in the reactivation of organophosphate-inhibited acetylcholinesterase Luo C, Leader H, Radic Z, Maxwell DM, Taylor P, Doctor BP, Saxena A Ref: Biochemical Pharmacology, 66:387, 2003 : PubMed
The inhibition of acetylcholinesterase (AChE) by organophosphorus compounds (OPs) causes acute toxicity or death of the intoxicated individual. One group of these compounds, the OP nerve agents, pose an increasing threat in the world due to their possible use in the battlefield or terrorist acts. Antidotes containing oxime compounds to reactivate the inhibited enzyme are highly valued for treatment against OP poisoning. One of these reactivators, HI-6, was shown to be significantly more effective in treating soman toxicity than other oximes, such as 2-PAM, TMB4, and obidoxime. However, HI-6 was less effective in reactivating AChE inhibited by the OP pesticide, paraoxon. In this study, the mechanism for HI-6-induced reactivation of OP-AChE conjugates was investigated using mouse mutant AChEs inhibited with different OPs including organophosphate paraoxon, and several methylphosphonates. Results indicate that the HI-6 molecule may assume two different orientations in the reactivation of AChE inhibited by organophosphate and Sp methylphosphonates. These conclusions were further corroborated by reactivation studies using an analog of HI-6 in which the bispyridinium moieties are linked by a methylene bridge rather than an ether oxygen.
        
Title: Natural monomeric form of fetal bovine serum acetylcholinesterase lacks the C-terminal tetramerization domain Saxena A, Hur RS, Luo C, Doctor BP Ref: Biochemistry, 42:15292, 2003 : PubMed
Acetylcholinesterase isolated from fetal bovine serum (FBS AChE) was previously characterized as a globular tetrameric form. Analysis of purified preparations of FBS AChE by gel permeation chromatography revealed the presence of a stable, catalytically active, monomeric form of this enzyme. The two forms could be distinguished from each other based on their molecular weight, hydrodynamic properties, kinetic properties, thermal stability, and the type of glycans they carry. No differences between the two forms were observed for the binding of classical inhibitors such as edrophonium and propidium or inhibitors that are current or potential drugs for the treatment of Alzheimer's disease such as (-) huperzine A and E2020; tacrine inhibited the monomeric form 2-3-fold more potently than the tetrameric form. Sequencing of peptides obtained from an in-gel tryptic digest of the monomer and tetramer by tandem mass spectrometry indicated that the tetramer consists of 583 amino acid residues corresponding to the mature form of the enzyme, whereas the monomer consists of 543-547 amino acid residues. The subunit molecular weight of the protein component of the monomer (major species) was determined to be 59 414 Da and that of the tetramer as 64 239 Da. The N-terminal of the monomer and the tetramer was Glu, suggesting that the monomer is not a result of truncation at the N-terminal. The only differences detected were at the C-terminus. The tetramer yielded the expected C-terminus, CSDL, whereas the C-terminus of the monomer yielded a mixture of peptides, of which LLSATDTLD was the most abundant. These results suggest that monomeric FBS AChE is trimmed at the C-terminus, and the results are consistent with the involvement of C-terminal amino acids in the assembly of monomers into tetramers.
Determining the effect of gene deletion is a fundamental approach to understanding gene function. Conventional genetic screens exhibit biases, and genes contributing to a phenotype are often missed. We systematically constructed a nearly complete collection of gene-deletion mutants (96% of annotated open reading frames, or ORFs) of the yeast Saccharomyces cerevisiae. DNA sequences dubbed 'molecular bar codes' uniquely identify each strain, enabling their growth to be analysed in parallel and the fitness contribution of each gene to be quantitatively assessed by hybridization to high-density oligonucleotide arrays. We show that previously known and new genes are necessary for optimal growth under six well-studied conditions: high salt, sorbitol, galactose, pH 8, minimal medium and nystatin treatment. Less than 7% of genes that exhibit a significant increase in messenger RNA expression are also required for optimal growth in four of the tested conditions. Our results validate the yeast gene-deletion collection as a valuable resource for functional genomics.
Exposure to organophosphorus compounds (OPs), in the form of nerve agents and pesticides poses an ever increasing military and civilian threat. In recent years, attention has focused on the use of exogenously administered cholinesterases as an effective prophylactic treatment for protection against OPs. Clearly, a critical prerequisite for any potential bioscavenger is a prolonged circulatory residence time, which is influenced by the size of protein, the microheterogeneity of carbohydrate structures, and the induction (if any) of anti-enzyme antibodies following repeated injections of the enzyme. Previously, it was demonstrated that multiple injections of equine butyrylcholinesterase (BChE) into rabbits, rats, or rhesus monkeys, resulted in a mean residence time spanning several days, and variable immune responses. The present study sought to assess the pharmacokinetics and immunological consequences of administration of purified macaque BChE into macaques of the same species at a dose similar to that required for preventing OP toxicity. An i.v. injection of 7,000 U of homologous enzyme in monkeys demonstrated much longer mean residence times in plasma (MRT = 225 +/- 19 h) compared to those reported for heterologous Hu BChE (33.7 +/- 2.9 h). A smaller second injection of 3,000 U given four weeks later, attained predicted peak plasma levels of enzyme activity, but surprisingly, the MRT in the four macaques showed wide variation and ranged from 54 to 357 h. No antibody response was detected in macaques following either injection of enzyme. These results bode well for the potential use of human BChE as a detoxifying drug in humans.
        
Title: Role of edrophonium in prevention of the re-inhibition of acetylcholinesterase by phosphorylated oxime Luo C, Saxena A, Ashani Y, Leader H, Radic Z, Taylor P, Doctor BP Ref: Chemico-Biological Interactions, 119-120:129, 1999 : PubMed
We examined the role of edrophonium in the acceleration phenomenon using mouse wild-type and mutant D74N AChE inhibited with 7-(O,O-diethyl-phosphinyloxy)-1-methylquinolinium methylsulfate (DEPQ). With DEPQ-inhibited wild-type mouse acetylcholinesterase (AChE), the reactivation kinetic profile demonstrated one-phase exponential association only when 2-[hydroxyimino methyl]-1-methylpyridinium chloride (2-PAM) and 1-(2-hydroxy-iminomethyl-1-pyridinium)-1-(4-carboxy-aminopyridi nium)-dimethyl ether hydrochloride (HI-6) were used as reactivators. When 1,1[oxybis-methylene)bis[4-(hydroxyimino)methyl] pyridinium dichloride (LuH6) and 1,1-trimethylene bis(4-hydroxyimino methyl) pyridinium dichloride (TMB4) were used, the reactivation kinetic profile was biphasic in nature. Edrophonium had no effect on reactivation by 2-PAM and HI-6, but significantly accelerated LuH6- and TMB4-induced reactivation of DEPQ-inhibited wild-type mouse AChE. Comparison of the initial and overall reactivation rate constants with five oximes indicated that acceleration by edrophonium may be due to the prevention of re-inhibition of the reactivated enzyme by the phosphorylated oxime (POX) produced during the reactivation. With LuH6 and TMB4, about 2.5-fold increase in the reactivation rate constants was observed in the presence of edrophonium, but little or no effect was observed with the other three oximes. The initial reactivation rate constants were 5.4- and 4.2-fold of the overall rate constants with LuH6 and TMB4 as reactivators respectively, however, very little change was found between the initial and overall rate constants with the other three oximes. In experiments with D74N AChE, for which the inhibition potency of charged organophosphate (OP) was two to three orders less than wild-type enzyme, edrophonium had no effect on the reactivation by LuH6 and TMB4 and the time courses of reactivation were monophasic. The data from mutant enzyme substantiate the involvement of edrophonium in protecting POX re-inhibition of reactivated enzyme formed during the reactivation of OP-inhibited AChE.
Reactivation of organophosphate (OP)-inhibited acetylcholinesterase (AChE) is a key objective in the treatment of OP poisoning. This study with native, wild-type, and mutant recombinant DNA-expressed AChEs, each inhibited by representative OP compounds, establishes a relationship between edrophonium acceleration of oxime-induced reactivation of OP-AChE conjugates and phosphoryl oxime inhibition of the reactivated enzyme that occurs during reactivation by pyridinium oximes LH6 and TMB4. No such recurring inhibition could be observed with HI-6 as the reactivator due to the extreme lability of the phosphoryl oximes formed by this oxime. Phosphoryl oximes formed during reactivation of the ethoxy methylphosphonyl-AChE conjugate by LH6 and TMB4 were isolated for the first time and their structures confirmed by (31)P NMR. However, phosphoryl oximes formed during the reactivation of the diethylphosphoryl-AChE conjugate were not sufficiently stable to be detected by (31)P NMR. The purified ethoxy methylphosphonyl oximes formed during the reactivation of ethoxy methylphosphonyl-AChE conjugate with LH6 and TMB4 are 10- to 22-fold more potent than MEPQ as inhibitors of AChE and stable for several hours at pH 7.2 in HEPES buffer. Reactivation of both ethoxy methylphosphonyl- and diethylphosphoryl-AChE by these two oximes was accelerated in the presence of rabbit serum paraoxonase, suggesting that organophosphorus hydrolase can hydrolyze phosphoryl oxime formed during the reactivation. Our results emphasize that certain oximes, such as LH6 and TMB4, if used in the treatment of OP pesticide poisoning may cause prolonged inhibition of AChE due to formation of phosphoryl oximes.
        
Title: Acceleration of oxime-induced reactivation of acetylcholinesterase-organophosphate conjugate and 31P NMR detection of phosporyl oxime from the conjugate Luo C, Ashani Y, Doctor BP Ref: Journal de Physiologie (Paris), 92:461, 1998 : PubMed
Title: Acceleration of Oxime-Induced Reactivation of Organophosphate-Inhibited Acetylcholinesterase by Quaternary Ligands Luo C, Ashani Y, Saxena A, Leader H, Maxwell DM, Taylor P, Doctor BP Ref: In: Structure and Function of Cholinesterases and Related Proteins - Proceedings of Sixth International Meeting on Cholinesterases, (Doctor, B.P., Taylor, P., Quinn, D.M., Rotundo, R.L., Gentry, M.K. Eds) Plenum Publishing Corp.:215, 1998 : PubMed
Title: Acceleration of Oxime-Induced Reactivation of Organophosphate-Inhibited Fetal Bovine Serum Acetylcholinesterase by Monoquaternary and Bisquaternary Ligands Luo C, Ashani Y, Doctor BP Ref: Molecular Pharmacology, 53:718, 1998 : PubMed
Reactivation of organophosphate (OP)-inhibited acetylcholinesterase (AChE) by oximes is the primary reason for their effectiveness in the treatment of OP poisoning. Reactivation is reported to accelerate by quaternary ligands such as decamethonium, which is devoid of nucleophilicity. The mechanism of this enhancement is not known. To better understand the acceleration phenomenon, we examined ligand modulations of oxime-induced reactivation of methylphosphonylated AChE using 7-(methylethoxyphosphinyloxy)-1-methylquinolinium iodide and fetal bovine serum AChE. Edrophonium, decamethonium, and propidium, three quaternary AChE ligands of different types, were tested as potential accelerators. Experiments were carried out with both soluble enzyme preparation and AChE conjugated to polyurethane. Kinetic measurements with oximes 2-[hydroxyiminomethyl]-1-methylpyridinium chloride, 1,1'-trimethylene bis-(4-hydroxyimino methyl)-pyridinium dibromide, and 1, 1'-[oxybis-methylene)bis[4-(hydroxyimino)methyl]pyridiniu um dichloride showed that in the presence of 50 microM edrophonium, the reactivation rate constants increased 3.3-12.0-fold; 200 microM decamethonium produced a 1.6-3.0-fold enhancement of reactivation rate constants by the same oximes. Reactivation of the inhibited enzyme by 1-(2-hydroxyiminomethyl-1-pyridinium)-1-(4-carboxy-aminopyridinium )-d imethyl ether hydrochloride, 1-(2-hydroxyiminomethyl-1-pyridinium)-1-(3-carboxy-aminopyridinium )-d imethyl ether hydrochloride, and 1-[[[4-(aminocarbonyl)pyridino]methoxy]methyl]-2, 4, -bis(hydroxyimino)methyl pyridinium dichloride was not affected by either ligand. Propidium slowed the reactivation of 7-(methylethoxyphosphinyloxy)-1- methylquinolinium iodide-inhibited AChE by all oximes. Results suggest that the accelerator site may reside inside the catalytic gorge rather than at its entrance and acceleration may be due to the prevention of reinhibition of the regenerated enzyme by the putative product, the phosphonylated oxime. In addition to the nucleophilic property of the oximate anion, some of the reactivators may carry an accelerating determinant, as characterized with respect to edrophonium and decamethonium. Results offer possible explanations for the superiority of 1-(2-hydroxyiminomethyl-1-pyridinium)-1-(4-carboxy-aminopyridinium )-d imethyl ether hydrochloride over other oximes in the reactivation of specific AChE-OP conjugates.
        
Title: Amino Acid Sequence of Horse Serum Butyrylcholinesterase Moorad DR, Luo C, Saxena A, Doctor BP, Garcia GE Ref: In: Structure and Function of Cholinesterases and Related Proteins - Proceedings of Sixth International Meeting on Cholinesterases, (Doctor, B.P., Taylor, P., Quinn, D.M., Rotundo, R.L., Gentry, M.K. Eds) Plenum Publishing Corp.:145, 1998 : PubMed
Title: HI-6 is Incapable of Reactivating Tabun-Phosphonylated Human Acetylcholinesterase Luo C, Yang J, Sun M Ref: In Enzyme of the Cholinesterase Family - Proceedings of Fifth International Meeting on Cholinesterases, (Quinn, D.M., Balasubramanian, A.S., Doctor, B.P., Taylor, P., Eds) Plenum Publishing Corp.:391, 1995 : PubMed