Ma YongchaoResearch Center of Eco-Environment Sciences, Chinese Academy of Sciences. State Key Laboratory of Environmental Chemistry and Ecotoxicology ChinaPhone : Fax : Send E-Mail to Ma Yongchao
Title: Lactobacillus plantarum HF02 alleviates lipid accumulation and intestinal microbiota dysbiosis in high-fat diet-induced obese mice Chen H, Zhao H, Qi X, Sun Y, Li Q, Ma Y Ref: J Sci Food Agric, :, 2023 : PubMed
BACKGROUND: Obesity is closely associated with lipid accumulation and intestinal microbiota dysbiosis. It has been proved that probiotics supplement contributes to alleviate obesity. The objective of this study was to investigate the mechanism by which Lactobacillus plantarum HF02 (LP-HF02) alleviated lipid accumulation and intestinal microbiota dysbiosis in high-fat diet (HFD)-induced obese mice. RESULTS: Our results showed that LP-HF02 ameliorated body weight, dyslipidemia, liver lipid accumulation, and liver injury in obese mice. As expected, LP-HF02 inhibited pancreatic lipase activity in small intestinal contents and increased fecal triglyceride levels, thereby reducing dietary fat hydrolysis and absorption. Moreover, LP-HF02 ameliorated the intestinal microbiota composition, as evidenced by enhanced the ratio of Bacteroides to Firmicutes, decreased the abundance of pathogenic bacteria (including Bacteroides, Alistipes, Blautia, and Colidextribacter) and increased the abundance of beneficial bacteria (including Muribaculaceae, Akkermansia, Faecalibaculum, and Rikenellaceae_RC9_gut_group). LP-HF02 also increased fecal short-chain fatty acids (SCFAs) levels and colonic mucosal thickness, and subsequently decreased serum lipopolysaccharide (LPS), interleukin-1beta (IL-1beta), and tumor necrosis factor-alpha (TNF-alpha) levels in obese mice. Additionally, RT-qPCR and western blot results demonstrated that LP-HF02 ameliorated hepatic lipid accumulation via activating the AMP-activated protein kinase (AMPK) pathway. CONCLUSION: Therefore, our results indicated that LP-HF02 could be considered as a probiotic preparation for preventing obesity. This article is protected by copyright. All rights reserved.
        
Title: Therapeutic potential of aromatic plant extracts in Alzheimer's disease: Comprehensive review of their underlying mechanisms Ma Y, Li Y, Yin R, Guo P, Lei N, Li G, Xiong L, Xie Y Ref: CNS Neurosci Ther, :, 2023 : PubMed
AIMS: The aim of this review is to outline recent advancements in the application and mechanistic studies of aromatic plant extracts in Alzhermer`s disease (AD) to demonstrate their value in the management of this disease. BACKGROUND: AD is a neurodegenerative disease with a complex pathogenesis characterized by severe cognitive impairment. Currently, there are very few drugs available for the treatment of AD, and treatments are primarily focused on symptom relief. Aromatherapy is a traditional complementary alternative therapy that focuses on the prevention and treatment of the disease through the inhalation or transdermal administration of aromatic plant extracts. Over the past few years, studies on the use of aromatic plant extracts for the treatment of AD have been increasing and have demonstrated a definitive therapeutic effect. METHODS: We systematically summarized in vitro, in vivo, and clinical studies focusing on the potential use of aromatic plant extracts in the treatment of AD in PubMed, ScienceDirect, Google Scholar, and the Chinese National Knowledge Infrastructure from 2000 to 2022. RESULTS: Our literature survey indicates that aromatic plant extracts exert anti-AD effects by modulating pathological changes through anti-amyloid, anti-tau phosphorylation, anti-cholinesterase, anti-inflammation, and anti-oxidative stress mechanisms (Figure 1). CONCLUSION: This review provides a future strategy for the research of novel anti-AD drugs from aromatic plant extracts.
        
Title: Preparation, structural properties, and in vitro and in vivo activities of peptides against dipeptidyl peptidase IV (DPP-IV) and alpha-glucosidase: a general review Mu X, Wang R, Cheng C, Ma Y, Zhang Y, Lu W Ref: Crit Rev Food Sci Nutr, :1, 2023 : PubMed
Diabetes is one of the fastest-growing and most widespread diseases worldwide. Approximately 90% of diabetic patients have type 2 diabetes. In 2019, there were about 463 million diabetic patients worldwide. Inhibiting the dipeptidyl peptidase IV (DPP-IV) and alpha-glucosidase activity is an effective strategy for the treatment of type 2 diabetes. Currently, various anti-diabetic bioactive peptides have been isolated and identified. This review summarizes the preparation methods, structure-effect relationships, molecular binding sites, and effectiveness validation of DPP-IV and alpha-glucosidase inhibitory peptides in cellular and animal models. The analysis of peptides shows that the DPP-IV inhibitory peptides, containing 2-8 amino acids and having proline, leucine, and valine at their N-terminal and C-terminal, are the highly active peptides. The more active alpha-glucosidase inhibitory peptides contain 2-9 amino acids and have valine, isoleucine, and proline at the N-terminal and proline, alanine, and serine at the C-terminal.
        
Title: Identification of a 2-phenylthiazole derivative acetylcholinesterase modulator with in vitro antitumor activity in breast cancer cells Shi X, Liu P, Ma Y, Li M, Zhang Z, Zhang X, Shi D, Si X Ref: Chemical Biology Drug Des, :, 2023 : PubMed
Acetylcholinesterase (AchE) is a serine hydrolase with classical function to degrade acetylcholine and terminate neurotransmission. While "nonclassical" functions of AchE were involved in cell growth, death, invasion, etc. The expression and activity of AchE is changed in tumors, suggesting AChE inhibitors (AchEIs) may serve as potential antitumor drugs. In this study, the antitumor activity of a series of 2-phenylthiazole derivatives originally designed and synthesized as AchEIs were investigated. One compound named A6, was screened out with superior antitumor efficacy, especially against breast cancer MCF-7 cells. A6 significantly disrupted the amino acid metabolism and inhibited migration of MCF-7. In addition, A6 induced apoptosis of MCF-7 cells. To clarify how A6 affected on MCF-7 cells, RNA-seq analysis was conducted to evaluate the whole genome effect of A6 on gene expression. A total of 153 genes were increased, and the expression of 81 genes was decreased. GO and KEGG enrichment analysis showed A6 treatment mainly disrupted sterol/cholesterol pathway, Ras signaling pathway, VEGF signaling pathway, etc. Moreover, bioinformatic analysis and cell viability test showed A6 plays anticancer role by regulating Best1 and HIST1H2BJ. These results indicate that AchEI A6 could be a potential antitumor agent for breast cancer patients and could help the development of novel therapies.
OBJECTIVE: CEL-related maturity-onset diabetes of the young (CEL-MODY, MODY8) is a special type of monogenetic diabetes caused by mutations in the carboxyl-ester lipase (CEL) gene. This study aimed to summarize the genetic and clinical characteristics of CEL-MODY patients and to determine the prevalence of the disease among Chinese patients with early-onset type 2 diabetes (EOD). METHODS: We systematically reviewed the literature associated with CEL-MODY in PubMed, Embase, Web of Science, China National Knowledge Infrastructure and Wanfang Data to analyze the features of patients with CEL-MODY. We screened and evaluated rare variants of the CEL gene in a cohort of 679 Chinese patients with EOD to estimate the prevalence of CEL-MODY in China. RESULTS: In total, 21 individuals reported in previous studies were diagnosed with CEL-MODY based on the combination of diabetes and pancreatic exocrine dysfunction as well as frameshift mutations in exon 11 of the CEL gene. CEL-MODY patients were nonobese and presented with exocrine pancreatic affection (e.g., chronic pancreatitis, low fecal elastase levels, pancreas atrophy and lipomatosis) followed by insulin-dependent diabetes. No carriers of CEL missense mutations were reported with exocrine pancreatic dysfunction. Sequencing of CEL in Chinese EOD patients led to the identification of the variant p.Val736Cysfs*22 in two patients. However, these patients could not be diagnosed with CEL-MODY because there were no signs that the exocrine pancreas was afflicted. CONCLUSION: CEL-MODY is a very rare disease caused by frameshift mutations affecting the proximal VNTR segments of the CEL gene. Signs of exocrine pancreatic dysfunction provide diagnostic clues for CEL-MODY, and genetic testing is vital for proper diagnosis. Further research in larger cohorts is needed to investigate the characteristics and prevalence of CEL-MODY in the Chinese population.
Euphorlactone A (1), a rare rearranged ent-atisane norditerpenoid with an undescribed 3-nor-2,4-olide-ent-atisane scaffold, and euphorlactone B (2), a new ent-atisane diterpenoid with an unprecedented seven-membered lactone ring C, were isolated from the roots of Euphorbia fischeriana. Their planar structures with absolute configurations were extensively elucidated by analysis of 1D and 2D NMR data, electronic circular dichroism (ECD) calculations, Rh(2)(OCOCF(3))(4)-induced ECD curves, and single-crystal X-ray diffraction. Euphorlactone A (ELA) showed a remarkable AChE (acetylcholinesterase) inhibitory activity (IC(50) = 2.13 +/- 0.06 microM and K(i) = 0.058 microM), which was five times stronger than that of the positive control (rivastigmine, IC(50) = 12.46 +/- 0.82 microM), and further in vitro enzyme inhibition kinetic analysis and molecular docking studies were performed to investigate the AChE inhibitory mechanism.
        
Title: Abamectin induced brain and liver toxicity in carp: The healing potential of silybin and potential molecular mechanisms Wu X, Xin Y, Ma Y, Ping K, Li Q, Sun Y, Hu Z, Dong J Ref: Fish Shellfish Immunol, :109152, 2023 : PubMed
Abamectin (ABM) abuse contaminated aquatic environment and posed a potential threat to fish health as well as public safety. Silybin (SIL), a flavonoid, has been widely used as a novel feed additive to promote fish health. This research was to explore the potential antagonistic mechanism between ABM and SIL on brain and liver toxicity was investigated in common carp. Sixty carp were divided into four groups at random: the Control group, the SIL group, the ABM group, and ABM + SIL group. This experiment lasted for 30 d. According to behavioral observation, the detection of levels of acetylcholinesterase (AchE), iron, and mRNA expression levels of blood-brain barrier (BBB) related tight junction proteins (ZO-1, Claudin7, Occludin, MMP2, MMP9, and MMP13) in brain tissues, it was found that SIL relieved neurobehavioral disorders caused by ABM-induced BBB destruction in carp. H&E staining showed SIL mitigated nerve injury and liver injury caused by ABM. Oil red O staining and liver-related parameters showed that SIL alleviated hepatotoxicity and lipid metabolism disorder caused by ABM exposure. Furthermore, this work also explored the specific molecular mechanism of SIL in liver protection and neuroprotection. It was shown that SIL lowered ROS levels in liver and brain tissues via the GSK-3beta/TSC2/TOR pathway. Simultaneously, SIL inhibited NF-kappaB signaling pathway and played an anti-inflammatory role. In conclusion, we believed that SIL supplementation has a protective effect on the brain and liver by regulating oxidative stress and inflammation.
BACKGROUND: Dipeptidyl peptidase-4 inhibitors (DPP-4i) have become firmly established in treatment algorithms and national guidelines for improving glycemic control in type 2 diabetes mellitus (T2DM).To report the findings from a multicenter, randomized, double-blind, placebo-controlled phase 3 clinical trial, which was designed to assess the efficacy and safety of a novel DPP-4 inhibitor fotagliptin in treatment-naive patients with T2DM. METHODS: Patients with T2DM were randomized to receive fotagliptin (n = 230), alogliptin (n = 113) or placebo (n = 115) at a 2:1:1 ratio for 24 weeks of double-blind treatment period, followed by an open-label treatment period, making up a total of 52 weeks. The primary efficacy endpoint was to determine the superiority of fotagliptin over placebo in the change of HbA1c from baseline to Week 24. All serious or significant adverse events were recorded. RESULTS: After 24 weeks, mean decreases in HbA1c from baseline were -0.70% for fotagliptin, -0.72% for alogliptin and -0.26% for placebo. Estimated mean treatment differences in HbA1c were -0.44% (95% confidence interval [CI]: -0.62% to -0.27%) for fotagliptin versus placebo, and -0.46% (95% CI: -0.67% to -0.26%) for alogliptin versus placebo, and 0.02% (95%CI: -0.16% to 0.19%; upper limit of 95%CI < margin of 0.4%) for fotagliptin versus alogliptin. So fotagliptin was non-inferior to alogliptin. Compared with subjects with placebo (15.5%), significantly more patients with fotagliptin (37.0%) and alogliptin (35.5%) achieved HbA1c < 7.0% after 24 weeks of treatment. During the whole 52 weeks of treatment, the overall incidence of hypoglycemia was low for both of the fotagliptin and alogliptin groups (1.0% each). No drug-related serious adverse events were observed in any treatment group. CONCLUSIONS: In summary, the study demonstrated improvement in glycemic control and a favorable safety profile for fotagliptin in treatment-naive patients with T2DM. TRIAL REGISTRATION: ClinicalTrail.gov NCT05782192.
        
Title: Biodegradation Pathway and Detoxification of beta-cyfluthrin by the Bacterial Consortium and Its Bacterial Community Structure Li H, Ma Y, Yao T, Ma L, Zhang J, Li C Ref: Journal of Agricultural and Food Chemistry, 70:7626, 2022 : PubMed
In the process of microbial degradation of pyrethroid pesticides, the synergistic effect of the microbial community is more conducive to the complete degradation of toxic compounds than a single strain. At present, the degradation pathway of pyrethroids in a single strain has been well revealed, but the synergistic metabolism at the community level has not been well explained. This study elucidated the bacterial community succession, metabolic pathway, and phytotoxicity assessment during beta-cyfluthrin biodegradation by a novel bacterial consortium enriched from contaminated soil. The results showed that the half-life of beta-cyfluthrin at different initial concentrations of 0.25, 0.5, 0.75, and 1.0 mg mL(-1) were 4.16, 7.34, 12.81, and 22.73 days, respectively. Enterobacter was involved in beta-cyfluthrin degradation metabolism in the initial stage, and other bacterial genera (Microbacterium, Ochrobactrum, Pseudomonas, Hyphomicrobiaceae, Achromobacter, etc.) significantly contribute to the degradation of intermediate metabolites in the later stages. Functional gene prediction and metabolite analysis showed that xenobiotic biodegradation and metabolism, especially benzoate degradation and metabolism by cytochrome P450 were the major means of beta-cyfluthrin degradation. Further, two degradation pathways of beta-cyfluthrin were proposed, which were mainly ester hydrolysis and oxidation to degrade beta-cyfluthrin through the production of carboxylesterase and oxidoreductase. In addition, the inoculated bacterial consortium could degrade beta-cyfluthrin residues in water and soil and reduce its phytotoxicity in Medicago sativa. Hence, this novel bacterial consortium has important application in the remediation environments polluted by beta-cyfluthrin.
        
Title: Characterization of feruloyl esterases from Pecoramyces sp. F1 and the synergistic effect in biomass degradation Ma J, Ma Y, Li Y, Sun Z, Sun X, Padmakumar V, Cheng Y, Zhu W Ref: World J Microbiol Biotechnol, 39:17, 2022 : PubMed
Feruloyl esterase (FAE; EC 3.1.1.73)cleaves the ester bondbetween ferulic acid (FA) and sugar, to assist the release of FAs and degradation of plant cell walls. In this study, two FAEs (Fae13961 and Fae16537) from the anaerobic fungus Pecoramyces sp. F1 were heterologously expressed in Pichia pastoris (P. pastoris). Compared with Fae16537, Fae13961 had higher catalytic efficiency. The optimum temperature and pH of both the FAEs were 45 and 7.0, respectively. They showed good stability-Fae16537 retained up to 80% activity after incubation at 37 for 24h. The FAEs activity was enhanced by Ca(2+) and reduced by Zn(2+), Mn(2+), Fe(2+) and Fe(3+). Additionally, the effect of FAEs on the hydrolytic efficiency of xylanase and cellulase was also determined. The FAE Fae13961 had synergistic effect with xylanase and it promoted the degradation of xylan substrates by xylanase, but it did not affect the degradation of cellulose substrates by cellulase. When Fae13961 was added in a mixture of xylanase and cellulase to degrade complex agricultural biomass, it significantly enhanced the mixture's ability to disintegrate complex substrates. These FAEs could serve as superior auxiliary enzymes for other lignocellulosic enzymes in the process of degradation of agricultural residues for industrial applications.
        
Title: Characterization of the anti-AChE potential and alkaloids in Rhizoma Coptidis from different Coptis species combined with spectrum-effect relationship and molecular docking Qi L, Zhong F, Liu N, Wang J, Nie K, Tan Y, Ma Y, Xia L Ref: Front Plant Sci, 13:1020309, 2022 : PubMed
Coptis species are the main source of Rhizoma Coptidis (RC) drugs, which have always been used to treat Alzheimer's disease in the clinical experience of ancient China. However, many species of this genus have been largely underutilized until now. With this fact, this research has been designed to investigate for the first time the anti-acetylcholinesterase (AChE) property of different extracts for RC drugs from four Coptis species (C. chinensis, C. deltoidea, C. teeta and C. omeiensis) and to quantify the main alkaloids. Petroleum ether, ethyl acetate and n-butanol fractions of RC drugs were sequentially collected using an accelerated solvent extraction technique. Spectrum-effect relationship and molecular docking were applied to analyse the relationships between alkaloids and AChE inhibitory activity. The N-butanol extract was proven to be the main active fraction, and C. teeta may be the best source of RC drugs for Alzheimer's disease treatment, with significantly lower IC 20, IC 50 and IC 80 values for AChE inhibition. The UPLC/QqQ-MS quantitative analysis showed that the accumulations of 10 alkaloids in RC drugs from different sources greatly varied. Three data processing methods (Random forest, Boruta and Pearson correlation) comprehensively analysed the spectrum-effect relationship and revealed that columbamine, berberine and palmatine were the most important AChE inhibitors that could be used as quality markers to select RC drugs for Alzheimer's disease treatment. In addition, the dominant compounds were successfully docked against AChE to verify the binding affinity and interactions with the active site. The present study can contribute to the reasonable development and utilization of RC drugs from different sources, especially to provide certain evidence for their application in the treatment of Alzheimer's disease.
        
Title: Paper-Based Distance Sensor for the Detection of Lipase via a Phase Separation-Induced Viscosity Change Xia S, Yin F, Xu L, Zhao B, Wu W, Ma Y, Lin JM, Liu Y, Zhao M, Hu Q Ref: Analytical Chemistry, :, 2022 : PubMed
Human pancreatic lipase is a symbolic biomarker for the diagnosis of acute pancreatitis, which has profound significance for clinical detection and disease treatment. Herein, we first demonstrate a paper-based lipase sensor via a phase separation-induced viscosity change. Lipase catalyzes triolein to produce oleic acid and glycerol. Adding an excess of Ca(2+) produces calcium oleate. The remaining Ca(2+) binds with sodium alginate, triggering hydrogelation with an "egg-box" structure. The viscosity change of the aqueous solution induced by the phase separation process can be quantified by measuring the solution flow distance on a pH test paper. The paper-based lipase sensor has high sensitivity with a detection limit of 0.052 U/mL and also shows excellent specificity. Additionally, it is also utilized for quantitative lipase analysis in human serum samples to exhibit its potency in acute pancreatitis detection. This method overcomes the drawbacks of low sensitivity, slow response, and poor reproducibility caused by the nonuniform distribution of the highly viscous hydrogel on the sensing interface in existing approaches. In conclusion, thanks to the prominent characteristics of high portability, low cost, and easy operation, it is prospective for simple quantitative detection of lipase and has great potential for commercialization.
        
Title: Bioactivity-Guided Separation of Anti-Cholinesterase Alkaloids from Uncaria rhynchophlly (Miq.) Miq. Ex Havil Based on HSCCC Coupled with Molecular Docking Yu P, Chen Z, Liu Y, Gu Z, Wang X, Zhang Y, Ma Y, Dong M, Tian Z Ref: Molecules, 27:2013, 2022 : PubMed
As an important source of cholinesterase inhibitors, alkaloids in natural products have high potential value in terms of exerting pharmacological activities. In this study, a strategy for targeted preparation of cholinesterase inhibitors in Uncaria rhynchophlly (Miq.) Miq. ex Havil (UR) by high-speed counter-current chromatography was provided. In the method, a two-phase polar solvent system composed of ethyl acetate/n-butanol/water (1:4:5, v/v/v) was used, which isolated five alkaloids from the UR extract for the first time. All alkaloids were identified by HR-ESI-MS and NMR as 7-epi-javaniside (1), vincosamide (2), strictosamide (3), cadambine (4), and 3alpha-dihydrocadambine (5). The poorly resolved compounds 2 and 3 were separated by preparative HPLC (prep-HPLC). Among them, compounds 1, 4, and 5 were firstly obtained from UR. The purity of these plant isolates was 98.8%, 98.7%, 99.2%, 95.7%, and 98.5%, respectively. Compounds 1-5 exhibited an inhibitory effect on acetyl-cholinesterase and butyryl-cholinesterase with an IC(50) from 1.47 to 23.24 microg/mL and 1.01 to 18.24 microg/mL. Molecular docking and inhibitory activities indicated that compound 1 showed stronger inhibitory activity on acetyl-cholinesterase and butyryl-cholinesterase.
        
Title: Emerging role of psychosis in Parkinson's disease: From clinical relevance to molecular mechanisms Zhang S, Ma Y Ref: World J Psychiatry, 12:1127, 2022 : PubMed
Parkinson's disease (PD) is the second most common neurodegenerative disease. Psychosis is one of the common psychiatric presentations in the natural course of PD. PD psychosis is an important non-motor symptom, which is strongly correlated with a poor prognosis. Increasing attention is being given to PD psychosis. In this opinion review, we summarized and analyzed the identification, screening, epidemiology, mechanisms, risk factors, and therapeutic approaches of PD psychosis based on the current clinical evidence. PD psychosis tends to have a negative effect on patients' quality of life and increases the burden of family caregiving. Screening and identification in the early stage of disease is crucial for establishing tailored therapeutic strategies and predicting the long-term outcome. Development of PD psychosis is believed to involve a combination of exogenous and endogenous mechanisms including imbalance of neurotransmitters, structural and network changes, genetic profiles, cognitive impairment, and antiparkinsonian medications. The therapeutic strategy for PD psychosis includes reducing or ceasing the use of dopaminergic drug, antipsychotics, cholinesterase inhibitors, and non-pharmacological interventions. Ongoing clinical trials are expected to provide new insights for tailoring therapy for PD psychosis. Future research based on novel biomarkers and genetic factors may help inform individualized therapeutic strategies.
The ability to adapt to low-nutrient microenvironments is essential for tumor-cell survival and progression in solid cancers, such as colorectal carcinoma (CRC). Signaling by the NF-kappaB transcription-factor pathway associates with advanced disease stages and shorter survival in CRC patients. NF-kappaB has been shown to drive tumor-promoting inflammation, cancer-cell survival and intestinal epithelial cell (IEC) dedifferentiation in mouse models of CRC. However, whether NF-kappaB affects the metabolic adaptations that fuel aggressive disease in CRC patients is unknown. Here, we identified carboxylesterase 1 (CES1) as an essential NF-kappaB-regulated lipase linking obesity-associated inflammation with fat metabolism and adaptation to energy stress in aggressive CRC. CES1 promoted CRC-cell survival via cell-autonomous mechanisms that fuel fatty-acid oxidation (FAO) and prevent the toxic build-up of triacylglycerols. We found that elevated CES1 expression correlated with worse outcomes in overweight CRC patients. Accordingly, NF-kappaB drove CES1 expression in CRC consensus molecular subtype (CMS)4, associated with obesity, stemness and inflammation. CES1 was also upregulated by gene amplifications of its transcriptional regulator, HNF4A, in CMS2 tumors, reinforcing its clinical relevance as a driver of CRC. This subtype-based distribution and unfavourable prognostic correlation distinguished CES1 from other intracellular triacylglycerol lipases and suggest CES1 could provide a route to treat aggressive CRC.
        
Title: A Highly Efficient Three-Liquid-Phase-Based Enzymatic One-Pot Multistep Reaction System with Recoverable Enzymes for the Synthesis of Biodiesel Li Z, Chen H, Fang Y, Ma Y, Yang B, Wang Y Ref: Journal of Agricultural and Food Chemistry, 69:5481, 2021 : PubMed
A three-liquid-phase system (TLPS) was developed and used as a novel enzymatic one-pot multistep reaction (EOMR) system. In this system, lipase and phospholipase were enriched in a single liquid phase with a high recovery (ca. 98%) and then used for the simultaneous catalysis of mutually inhibiting and interfering reactions (hydrolysis of phospholipids and glyceride in crude oil). A novel emulsion containing the two dispersed droplets (W(2)/O/W(2) and W(1)/W(2) emulsion structures) could be the key reason for this phenomenon because the emulsion system not only provided a new catalytic interface but also relieved the product inhibition. As a result, the content of free fatty acid (main hydrolysate of the glyceride) and the removal of phospholipid from the crude oil could be increased to 96 and 95%, respectively, within 1 h. The product obtained from the EOMR was directly used in the production of biodiesel via enzymatic esterification, and the content of fatty acid methanol ester could be increased to 93% within 2 h. Furthermore, the enzymes in the middle phase could also be reused, at least for eight rounds without significant loss in catalytic efficiency. Therefore, the TLPS could be considered as an ideal catalytic platform for the EOMR.
        
Title: Reproductive stimulation and energy allocation variation of BDE-47 and its derivatives on Daphnia magna Liu Y, Chen M, Ma Y, Guo R, Yan Z, Chen J Ref: Chemosphere, 288:132492, 2021 : PubMed
As endocrine disrupting chemical, 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) is widely distributed in water environment with a high detection rate. 6-hydroxy-2,2',4,4'-tetrabromodiphenyl ether (6-OH-BDE-47) and 6-methoxy-2,2',4,4'-tetrabromodiphenyl ether (6-MeO-BDE-47) are two main derivatives of BDE-47. To explore the aquatic risk of BDE-47 and its derivatives, the effects of them and their ternary mixture on the reproduction, growth, energy allocation, and neurological and antioxidant responses of Daphnia magna were monitoring during different exposure periods, i.e., daphnids exposed to compounds for 21 days or pre-exposed to compounds for 14 days and then recovered 7 days in clean water. In general, in 21-day test, reproductive parameters of exposed daphnids were significantly stimulated, and the growth and enzymatic activities of super oxidase dimutase (SOD), glutathione peroxidase (GPx) and acetylcholinesterase (AChE) were significantly depressed by the single- or mixture compounds. In (14 + 7)-day test, the levels of body length, number of living offspring per female and the enzyme activities recovered to some degree. However, after 7 days of recovery in pollution free medium, the reproductive parameters and enzymatic activities of D. magna were unable to restore control values. These results showed that D. magna has a tendency that the energy allocated to reproduction was greater than that to grow after exposure. The energy distribution of D. magna occurred autonomously after being exposed, which can make it better adapt to environmental changes. Moreover, based on the behavioral and enzymology indicators of D. magna, the spider chart's application in the characteristic analysis of function indicators of D. magna implied that SOD, GPx and AChE could become sensitive biomarkers for different exposure periods. Those findings enable us to better understand BDE-47 and metabolites, and are conducive to better take measures to solve the pressure it brings.
        
Title: Magnetic covalent organic framework immobilized gold nanoparticles with high-efficiency catalytic performance for chemiluminescent detection of pesticide triazophos Ma Y, Zhao Y, Xu X, Ding S, Li Y Ref: Talanta, 235:122798, 2021 : PubMed
Covalent organic frameworks (COFs) are considered to be a promising support material for catalyst due to their highly ordered porous structure. Here, a core-shell structured Fe(3)O(4) magnetic covalent organic framework (Fe(3)O(4)@COF) was synthesized and employed to provide basic sites for immobilization of gold nanoparticles (AuNPs). The AuNPs was in-situ immobilized on the shell of Fe(3)O(4)@COF via a citrate reducing method. The Fe(3)O(4)@COF-AuNP had convenient magnetic separability and exhibited excellent mimicking peroxidase-like activity in catalyzing chemiluminescence (CL) reaction of luminol with hydrogen peroxide (H(2)O(2)). With acetylcholine chloride (ACh) as substrate of acetylcholinesterase (AChE), a CL method was exploited for sensitive detection of organophosphorus pesticide triazophos due to its irreversible inhibiting effect on the AChE activity and subsequently influences the production of H(2)O(2) under the condition of choline oxidase (ChOx). This method gave a good linearity for triazophos in the range of 5.0-300.0 nmol L(-1), and a limit of detection (LOD) of 1 nmol L(-1) was acquired. The applicability of this method was verified by the determination of triazophos in different spiked vegetable samples.
Neurons have recently emerged as essential cellular constituents of the tumour microenvironment, and their activity has been shown to increase the growth of a diverse number of solid tumours(1). Although the role of neurons in tumour progression has previously been demonstrated(2), the importance of neuronal activity to tumour initiation is less clear-particularly in the setting of cancer predisposition syndromes. Fifteen per cent of individuals with the neurofibromatosis 1 (NF1) cancer predisposition syndrome (in which tumours arise in close association with nerves) develop low-grade neoplasms of the optic pathway (known as optic pathway gliomas (OPGs)) during early childhood(3,4), raising the possibility that postnatal light-induced activity of the optic nerve drives tumour initiation. Here we use an authenticated mouse model of OPG driven by mutations in the neurofibromatosis 1 tumour suppressor gene (Nf1)(5) to demonstrate that stimulation of optic nerve activity increases optic glioma growth, and that decreasing visual experience via light deprivation prevents tumour formation and maintenance. We show that the initiation of Nf1-driven OPGs (Nf1-OPGs) depends on visual experience during a developmental period in which Nf1-mutant mice are susceptible to tumorigenesis. Germline Nf1 mutation in retinal neurons results in aberrantly increased shedding of neuroligin 3 (NLGN3) within the optic nerve in response to retinal neuronal activity. Moreover, genetic Nlgn3 loss or pharmacological inhibition of NLGN3 shedding blocks the formation and progression of Nf1-OPGs. Collectively, our studies establish an obligate role for neuronal activity in the development of some types of brain tumours, elucidate a therapeutic strategy to reduce OPG incidence or mitigate tumour progression, and underscore the role of Nf1mutation-mediated dysregulation of neuronal signalling pathways in mouse models of the NF1 cancer predisposition syndrome.
        
Title: Evaluation of PET Degradation Using Artificial Microbial Consortia Qi X, Ma Y, Chang H, Li B, Ding M, Yuan Y Ref: Front Microbiol, 12:778828, 2021 : PubMed
Polyethylene terephthalate (PET) biodegradation is regarded as an environmentally friendly degradation method. In this study, an artificial microbial consortium composed of Rhodococcus jostii, Pseudomonas putida and two metabolically engineered Bacillus subtilis was constructed to degrade PET. First, a two-species microbial consortium was constructed with two engineered B. subtilis that could secrete PET hydrolase (PETase) and monohydroxyethyl terephthalate hydrolase (MHETase), respectively; it could degrade 13.6% (weight loss) of the PET film within 7 days. A three-species microbial consortium was further obtained by adding R. jostii to reduce the inhibition caused by terephthalic acid (TPA), a breakdown product of PET. The weight of PET film was reduced by 31.2% within 3 days, achieving about 17.6% improvement compared with the two-species microbial consortium. Finally, P. putida was introduced to reduce the inhibition caused by ethylene glycol (EG), another breakdown product of PET, obtaining a four-species microbial consortium. With the four-species consortium, the weight loss of PET film reached 23.2% under ambient temperature. This study constructed and evaluated the artificial microbial consortia in PET degradation, which demonstrated the great potential of artificial microbial consortia in the utilization of complex substrates, providing new insights for biodegradation of complex polymers.
        
Title: An integrated approach using chemical ecological risk assessment and multi-integrated biomarker indexes approach to assess pollution: A case study of Ruditapes philippinarum in four bays on the Shandong Peninsula in China Sun J, Ma Y, Qin H, Li Z, Pan L Ref: Environ Research, :111793, 2021 : PubMed
Considering the ecological risks of polycyclic aromatic hydrocarbons (PAHs) to the marine environment, it is urgent to find scientific and effective monitoring methods. In this study, an integrated approach combining chemical ecological risk assessment and multi-integrated biomarker indexes approach was used to assess the marine environment. Samples included seawater, sediments, and clam Ruditapes philippinarum were collected from four bays on the Shandong Peninsula, China in the four seasons of 2019. The concentrations, composition, potential sources, and ecological risk of PAHs were investigated in seawater and sediments. Risk quotient (RQ) and sediment quality guidelines (SQGs) were calculated to assess the ecological risks of PAHs in seawater and sediment, respectively. And then, clam Ruditapes philippinarum's multi-level biological response, including its ethoxyresorufin-O-deethylase (EROD), glutathione S-transferase (GST), superoxide dismutase (SOD), lipid peroxidation (LPO), and acetylcholinesterase (AChE) were investigated in-depth, by which multi-integrated biomarker indexes approach were calculated to evaluate marine environmental quality. Taken together, the results showed that the concentration of PAHs was in good agreement with the response of biomarkers, and the usefulness of the combined use of chemical ecological risk assessment and integrated biomarker indexes to assess PAHs pollution was verified.
        
Title: New perspective on the regulation of acetylcholinesterase via the aryl hydrocarbon receptor Xie HQ, Ma Y, Fu H, Xu T, Luo Y, Liu Y, Chen Y, Xu L, Xia Y, Zhao B Ref: Journal of Neurochemistry, 158:1254, 2021 : PubMed
Acetylcholinesterase (AChE, EC 3.1.1.7) plays important roles in cholinergic neurotransmission and has been widely recognized as a biomarker for monitoring pollution by organophosphate (OP) and carbamate pesticides. Dioxin is an emerging environmental AChE disruptor and is a typical persistent organic pollutant with multiple toxic effects on the nervous system. Growing evidence has shown that there is a significant link between dioxin exposure and neurodegenerative diseases and neurodevelopmental disorders, most of which involve AChE and cholinergic dysfunctions. Therefore, an in-depth understanding of the effects of dioxin on AChE and the related mechanisms of action might help to shed light on the molecular bases of dioxin impacts on the nervous system. In the past decade, the effects of dioxins on AChE have been revealed in cultured cells of different origins and in rodent animal models. Unlike OP and carbamate pesticides, dioxin-induced AChE disturbance is not due to direct inhibition of enzymatic activity; instead, dioxin causes alterations of AChE expression in certain models. As a widely accepted mechanism for most dioxin effects, the aryl hydrocarbon receptor (AhR)-dependent pathway has become a research focus in studies on the mechanism of action of dioxin-induced AChE dysregulation. In this mini-review, the effects of dioxin on AChE and the diverse roles of the AhR pathway in AChE regulation are summarized. Additionally, the involvement of AhR in AChE regulation during different neurodevelopmental processes is discussed. These AhR-related findings might also provide new insight into AChE regulation triggered by diverse xenobiotics capable of interacting with AhR.
Acrylamide (ACR) is a recognized toxin that is known to induce neurotoxicity in humans and experimental animals. This study aimed to investigate the toxic effects of subacute exposure of the motor endplate (MEP) of the gastrocnemius in rats to ACR. All rats were randomly divided into control, 9, 18, and 36 mg/kg ACR groups, and ACR was administered by gastric gavage for 21 days. The behavioral tests were performed weekly. On the 22(nd) day, the wet weight of the gastrocnemius was measured. The changes in muscle fiber structure, nerve endings, and MEP in the gastrocnemius were examined by hematoxylin-eosin (HE) and gold chloride staining. Acetylcholinesterase (AChE) content in the gastrocnemius was detected by AChE staining. The expression of AChE and calcitonin gene-related peptide was detected by immunohistochemistry and western blot. Rats exposed to ACR showed a significant increase in gait scores and hind limb splay distance compared with the control group, and the wet weight of the gastrocnemius was reduced, HE staining showed that the muscle fiber structure of the gastrocnemius became thin and the arrangement was dense with nuclear aggregation, gold chloride staining showed that nerve branches decreased and became thin, nerve fibers became short and light, the number of MEPs was decreased, the staining became light, and the structure was not clear. AChE staining showed that the number of MEPs was significantly reduced after exposure to ACR, the shape became small, and the AChE content decreased in a dose-dependent manner. Immunohistochemistry and western blot analysis results of the expression levels of AchE and CGRP showed a decreasing trend as compared to the control group with increasing ACR exposure dose. The reduction in protein levels may be the mechanism by which ACR has a toxic effect on the MEP in the gastrocnemius of rats.
        
Title: Comprehensive profiling of phytochemical compounds, antioxidant activities, anti-HepG2 cell proliferation, and cholinesterase inhibitory potential of Elaeagnus mollis leaf extracts Li J, Ma Y, Kong L, Liu Y Ref: PLoS ONE, 15:e0239497, 2020 : PubMed
The aim of this work was to enrich the knowledge on the potential applications of Elaeagnus mollis leaf extracts. For this purpose, the bioactive compounds (phenolic, flavonoid, alkaloid, proanthocyanidin, chlorophyll and carotene content), antioxidant activity, anti-HepG2 cell proliferation, and cholinesterase inhibitory potential (AChE and BChE) of E. mollis leaves which obtained from different habitats were quantitatively analyzed using various solvents (water, methanol, ethanol, and n-hexane). The results showed that the methanol extracts exhibited the strongest 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity and the water extracts showed the best antioxidant activity in the 2,2'-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) free radical scavenging activity, ferric reducing antioxidant power (FRAP), and reducing power (RP) assays. Moreover, the methanol extracts showed the best inhibitory activity against cholinesterase and HepG2 cancer cells. Correlation analysis revealed that the high antioxidant and anti-HepG2 cell proliferation activities were mainly attributed to the total phenolics, flavonoids, and proanthocyanidins while AChE inhibition was attributed to the total alkaloid and carotene content. The statistical results showed that the effect of habitats was lower than that of different solvents used. Additionally, the metabolic profiles of E. mollis leaves were evaluated using HPLC-ESI-Q TRAP-MS/MS, and a total of 1,017 chemical components were detected and classified into 23 classes. The organic acids and derivatives ranked the first, followed by flavone, amino acid and derivatives, and so on. In conclusion, the effects of different solvents were more significant than the effects of different habitats and the methanol extracts of E. mollis leaves could be used as an effective source of functional active components, provide benefits to physical health care and be applied to the food and pharmaceutical industries.
        
Title: Deletion of bem46 retards spore germination and may be related to the polar growth of Aspergillus fumigatus Ma Y, Ji Y, Yang J, Li W, Li J, Cen W, Wang Y, Feng W Ref: Med Mycol, 58:690, 2020 : PubMed
Bud emergence 46 (BEM46), a member of the alpha/beta hydrolase superfamily, has been reported to be essential for polarized growth in Neurospora crassa. However, the role of BEM46 in aspergillus fumigatus (A. fumigatus) remains unclear. In this study, we constructed an A. fumigatus strain expressing BEM46 fused with enhanced green fluorescent protein, and a Deltabem46 mutant, to explore the localization and the role of growth of BEM46 in A. fumigatus, respectively. Confocal laser scanning microscopy revealed that BEM46 was dominantly expressed in the sites where hyphae germinated from conidia in A. fumigatus. When compared with the control strain, the Deltabem46 mutant exhibited insignificant morphological changes but delayed germination. No significant changes were found regarding the radial growth of both strains in response to various antifungal agents. These results suggest that BEM46 plays an essential role in timely germination in A. fumigatus. From the observation of fluorescence localization, we infer that that BEM46 might be involved in polarized growth in A. fumigatus.
        
Title: Brain-derived acetylcholine maintains peak bone mass in adult female mice Ma Y, Elefteriou F Ref: J Bone Miner Res, :, 2020 : PubMed
Preclinical and clinical data support a role of the sympathetic nervous system in the regulation of bone remodeling, but the contribution of parasympathetic arm of the autonomic nervous system to bone homeostasis remains less studied. In this study, we sought to determine whether acetylcholine (ACh) contributes to the regulation of bone remodeling after peak bone mass acquisition. We show that reduced central ACh synthesis in mice heterozygous for the choline transporter (ChT) leads to a decrease in bone mass in young female mice, thus independently confirming the previously reported beneficial effect of ACh signaling on bone mass accrual. Increasing brain ACh levels through the use of the blood brain barrier (BBB)-permeable acetylcholinesterase inhibitor (AChEI) galantamine increased trabecular bone mass in adult female mice, whereas a peripheral increase in ACh levels induced by the BBB-impermeable AChEI pyridostigmine caused trabecular bone loss. AChEIs did not alter skeletal norepinephrine level, and induced an overall increase in osteoblast and osteoclast densities, two findings that do not support a reduction in sympathetic outflow as the mechanism involved in the pro-anabolic effect of galantamine on the skeleton. In addition, we did not detect changes in the commitment of skeletal progenitor cells to the osteoblast lineage in vivo in AChEI-treated mice, nor a direct impact of these drugs in vitro on the survival and differentiation of osteoblast and osteoclast progenitors. Lastly, ChT heterozygosity and galantamine treatment triggered bone changes in female mice only, thus revealing the existence of a gender-specific skeletal response to brain ACh level. In conclusion, this study supports the stimulatory effect of central ACh on bone mass accrual, shows that it also promotes peak bone mass maintenance in adult mice, and suggests that central ACh regulates bone mass via different mechanisms in growing versus sexually mature mice.
        
Title: Observation of the elevation of cholinesterases activity in brain glioma by a near-infrared emission chemsensor Ma Y, Gao W, Ma S, Liu Y, Lin W Ref: Analytical Chemistry, 92(19):13405-13410:, 2020 : PubMed
The excessive expression of cholinesterases (ChEs) directly disturbs the metabolism of acetylcholine (ACh), causing disor-dering neurotransmission in the brain or even Alzheimer's disease and cancer. However, the variation of ChEs including ce-tylcholinesterase and butyrylcholinesterase in brain glioma has not yet been investigated. Therefore, the development of a suitable method for in situ imaging ChEs in brain tissue to understand the physiological functions of ChEs in depth is very important. Herein, a new near-infrared emission fluorescent probe (IPAN) for visualization of ChEs activity was developed. IPAN exihibits ultrafast response to ChEs, low detection limit for AChE (0.127 U/mL) and BChE (0.0117 U/mL) as well as a large Stokes shift with near-infrared emission. Based on these excellent attributes, the IPAN was effectively utilized for im-aging the fluctuations of ChEs activity in the apoptosis cells and zebrafish. Notably, by utilizing the unique probe IPAN, we observed a significant enhancement of ChEs activity in the tumor cells and brain glioma, for the first time. We believe that this interesting finding could provide a powerful guidance for tumor resection in the future.
        
Title: Chronic trichlorfon stress induces differential transcriptome expression and interferes with multifunctional pathways in the brain of Rana chensinensis Ma Y, Li B, Ke Y, Zhu HY, Zhang YH Ref: J Environ Sci Health B, :1, 2020 : PubMed
Trichlorfon is widely used to control pest insects and various parasitic infestations in agriculture, aquaculture and human medicine. However, the long-term widespread use and overuse of trichlorfon poses risks to public and environmental health. Thus, the aim of this study was to evaluate the interference of trichlorfon on gene transcription patterns in the brain of Rana chensinensis with 4 weeks treatment under control conditions and 0.1 mg/L exposure. In total, 102,013 unigenes were obtained from the brain tissue of R. chensinensis, and 874 differentially expressed genes (DEGs) were identified. Functional annotation indicated that out of 118,643 unigenes, 45,600 (44.7%) were annotated in the Nr, Nt, the Swiss-Prot, KEGG, COG, and GO databases. The differential expression patterns of 4 genes associated with neural activity were selected and validated by quantitative polymerase chain reaction (qPCR). The results revealed that except for the canonical cholinesterase-based mechanism, trichlorfon could act on other receptors and alter certain types of neuronal ion channels as the major target sites. All of these effects ultimately cause disorders of multifunctional pathways and other neurotransmitter pathways in the host. The results further our understanding of the mechanisms underlying nontarget effects of organophosphate insecticides (OPs) through multitargets studies.
        
Title: Gestational and lactational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin in mice: Neurobehavioral effects on female offspring Sha R, Chen Y, Wang Y, Luo Y, Liu Y, Ma Y, Li Y, Xu L, Xie HQ, Zhao B Ref: Sci Total Environ, 752:141784, 2020 : PubMed
Emerging evidence suggests that perinatal dioxin exposure affects neurodevelopment and impairs multiple brain functions, including cognitive, language, learning and emotion, in the offspring. However, the impacts of gestational and lactational exposure to dioxin on behavior and related molecular events are still not fully understood. In this study, female C57BL/6J mice were orally administered three doses of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) (0.1 or 10 mug/kg body weight (bw)) during the pregnancy and lactation periods. The locomotion, exploration and anxiety-related behaviors were examined by an open field test of the young adult female offspring at postnatal day 68. We found that the maternal TCDD exposure, particularly at a low dose, increased movement ability, novelty-exploration and certain anxiety-related behaviors in the offspring. Such hyperactivity-like behaviors were accompanied by the upregulation of certain genes associated with cholinergic neurotransmission or synaptogenesis in the offspring brain. In accordance with the potential enhancement of cholinergic neurotransmission due to the gene upregulations, the enzymatic activity of acetylcholinesterase was decreased, which might lead to excess acetylcholine and consequent hyper-excitation at the synapses. Thus, we found that gestational and lactational TCDD exposure at low dose caused hyperactivity-like behaviors in young adult female offspring and speculated the enhancement of cholinergic neurotransmission and synaptogenesis as potential molecular events underlying the neurobehavioral effects.
        
Title: Adipokinetic hormone enhances CarE-mediated chlorpyrifos resistance in the brown planthopper, Nilaparvata lugens Tang B, Cheng Y, Li Y, Li W, Ma Y, Zhou Q, Lu K Ref: Insect Molecular Biology, 29:511, 2020 : PubMed
Adipokinetic hormone (AKH), the principal stress-responsive neurohormone in insects, has been implicated in insect responses to insecticides. However, the functionality of AKH and its mode of signalling in insecticide resistance are unknown. Herein, we demonstrated that the enhanced activity of carboxylesterases (CarEs) is involved in the chlorpyrifos resistance in Nilaparvata lugens [brown planthopper (BPH)]. Chlorpyrifos exposure significantly induced the expression of AKH and its receptor AKHR in the susceptible BPH (Sus), and these two AKH signalling genes were over-expressed in the chlorpyrifos-resistant strain (Res) compared to Sus. RNA interference (RNAi) against AKH or AKHR decreased the CarE activity and suppressed the BPH's resistance to chlorpyrifos in Res. Conversely, AKH peptide injection elevated the CarE activity and enhanced the BPH's survival against chlorpyrifos in Sus. Furthermore, five CarE genes were identified to be positively affected by the AKH pathway using RNAi and AKH injection. Among these CarE genes, CarE and Esterase E4-1 were found to be over-expressed in Res compared to Sus, and knockdown of either gene decreased the BPH's resistance to chlorpyrifos. In conclusion, AKH plays a role in enhancing chlorpyrifos resistance in the BPH through positive influence on the expression of CarE genes and CarE enzyme activity.
        
Title: Sanger's Reagent Sensitized Photocleavage of Amide Bond for Constructing Photocages and Regulation of Biological Functions Wei T, Lu S, Sun J, Xu Z, Yang X, Wang F, Ma Y, Shi Y, Chen X Ref: Journal of the American Chemical Society, :, 2020 : PubMed
Photolabile groups offer promising tools to study biological processes with highly spatial and temporal control. In the investigation, we designed and prepared several new glycine amide derivatives of Sanger's reagent and demonstrated that they serve as a new class of photocages for Zn2+ and an acetylcholinesterase (AChE) inhibitor. We showed that the mechanism for photocleavage of these substances involves initial light-driven cyclization between the 2,4-dinitrophenyl and glycine methylene groups to form acyl benzimidazole N-oxides, which undergo secondary photoinduced decarboxylation in association with rupture of an amide bond. The cleavage reactions proceed with modest to high quantum yields. We demonstrated that these derivatives can be used in targeted intracellular delivery of Zn2+, fluorescent imaging by light-triggered Zn2+ release, and regulation of biological processes including the enzymatic activity of carbonic anhydrase (CA), negative regulation of N-methyl-D-aspartate receptors (NMDARs) and pulse rate of cardiomyocytes. The successful proof-of-concept examples described above open a new avenue for using Sanger's reagent-based glycine amides as photocages for the exploration of complex cellular functions and signaling pathways.
Progenitor cells are crucial in controlling organ morphogenesis. Tooth development is a well-established model for investigating the molecular and cellular mechanisms that regulate organogenesis. Despite advances in our understanding of how tooth crown formation is regulated, we have limited understanding of tooth root development. Runt-related transcription factor 2 (RUNX2) is a well-known transcription factor in osteogenic differentiation and early tooth development. However, the function of RUNX2 during tooth root formation remains unknown. We revealed in this study that RUNX2 is expressed in a subpopulation of GLI1+ root progenitor cells, and that loss of Runx2 in these GLI1+ progenitor cells and their progeny results in root developmental defects. Our results provide in vivo evidence that Runx2 plays a crucial role in tooth root development and in regulating the differentiation of root progenitor cells. Furthermore, we identified that Gli1, Pcp4, NOTUM, and Sfrp2 are downstream targets of Runx2 by integrating bulk and single-cell RNA sequencing analyses. Specifically, ablation of Runx2 results in downregulation of WNT inhibitor NOTUM and upregulation of canonical WNT signaling in the odontoblastic site, which disturbs normal odontoblastic differentiation. Significantly, exogenous NOTUM partially rescues the impaired root development in Runx2 mutant molars. Collectively, our studies elucidate how Runx2 achieves functional specificity in regulating the development of diverse organs and yields new insights into the network that regulates tooth root development. 2020 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Humans and rodents with Comparative Gene Identification-58 (CGI-58) mutations manifest nonalcoholic fatty liver disease (NAFLD). Here we show that liver CGI-58 knockout (LivKO) mice fed a Western diet rapidly develop advanced NAFLD, including nonalcoholic steatohepatitis (NASH) and hepatic fibrosis. After 14 weeks of diet challenge, starting at 6 weeks of age, LivKO mice showed increased inflammatory cell infiltration and proinflammatory gene expression in the liver, which was associated with elevated plasma levels of aminotransferases. Hepatic ductular reactions, pericellular fibrosis, and bridging fibrosis were observed only in the LivKO mice. Consistently, the KO mice had a significant increase in hepatic mRNAs for fibrogenic genes. In addition, LivKO mice displayed massive accumulation of lipid droplets (LDs) in hepatocytes. LDs were also observed in the cholangiocytes of the LivKO mice, but not the floxed controls. Four of the five LD coat proteins, including perilipins 2, 3, 4, and 5, were increased in the CGI-58 KO liver. CRISPR/Cas9-mediated knockout of CGI-58 in Huh7 human hepatoma cells induced LD deposition and perilipin expression, suggesting a cell autonomous effect. Our findings establish the Western diet-fed LivKO mice as an animal model of NASH and hepatic fibrosis. These animals may facilitate preclinical screening of therapeutic agents that counter against NAFLD progression.
        
Title: Chemical composition, antioxidant, antibacterial and cholinesterase inhibitory activities of three Juniperus species Zhang Y, Wu D, Kuang S, Qing M, Ma Y, Yang T, Wang T, Li D Ref: Nat Prod Res, 34:3531, 2020 : PubMed
The chemical composition, antioxidant, antibacterial and cholinesterase inhibitory activities of three Juniperus species were studied. The contents of total phenolic and 10 phenolic compounds were highest in Juniperus rigida Sieb.et Zucc., of which catechin and cumaric acid were the predominant phenolic compounds, but were lowest in Juniperus sibirica Burgsd. GC-MS analysis showed the highest contents of essential oils were in J. rigida (92.61%), followed by Juniperus formosana Hayata (87.30%) and J. sibirica (84.89%). The a-pinene was the most dominant compound in J. rigida (23.99%) and J. formosana (9.71%), however, it has not been detected in J. sibirica. Ethanol extracts showed the higher radical scavenging capacity in ABTS, FRAP and DPPH assays than essential oils. The essential oils and ethanol extracts of J.sibirica showed the strong antibacterial activity against Salmonella typhimurium and Escherichia coli. Three Juniperus species showed certain acetylcholinesterase and butyrylcholinesterase inhibitions and J. formosana showed better cholinesterase inhibitory.
        
Title: Aptamer-functionalized magnetic nanoparticles conjugated organic framework for immobilization of acetylcholinesterase and its application in inhibitors screening Zhao L, Yang G, Li L, Zhu C, Ma Y, Qu F Ref: Anal Chim Acta, 1140:228, 2020 : PubMed
Construction of new enzyme reactor based on aptamer functionalized magnetic nanoparticles conjugated organic framework (COF) for acetylcholinesterase immobilization has been an enabling endeavor in this work. The aptamer against acetylcholinesterase was selected through a method based on capillary electrophoresis in one round. A new magnetic COF material rich of carboxyl groups was firstly synthesized, and its surface was then modified with the selected aptamer through covalently linking. Acetylcholinesterase was immobilized to fabricate the enzyme reactor Fe(3)O(4)@COF-Apt-AChE through the high affinity and specificity with its binding aptamer. The as constructed enzyme reactor was comprehensively characterized and the key factors that affected its catalysis efficiency were investigated in detail. Owing to the surface modification of the magnetic COF materials by aptamer for acetylcholinesterase immobilization, the immobilized enzyme exhibited improved substrates affinity. What's more, good reusability (more than 8 times) and prolonged stability (enzyme activity still kept at 90% after 42 days) were also achieved. Finally, the enzyme reactor could be applied in AChE inhibitors screening, which expanded its application capability. The proposed protocol not only paves a new way for fabrication of novel aptamer functionalized magnetic COF materials as enzyme reactors, but also indicates a broadened application of the integration of aptamer and its enzyme.
PURPOSE: The iron-chelating agent di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) has been found to inhibit cell growth and to induce apoptosis in several human cancers. However, its effects and mechanism of action in glioma are unknown. METHODS: Human glioma cell line LN229 and patient-derived glioma stem cells GSC-42 were applied for both in vitro and in vivo xenograft nude mouse experiments. The anti-tumor effects of Dp44mT were assessed using MTS, EdU, TUNEL, Western blotting, qRT-PCR, luciferase reporter, chromatin immunoprecipitation and immunohistochemical assays. RESULTS: We found that Dp44mT can upregulate the expression of the anti-oncogene N-myc downstream-regulated gene (NDRG)2 by directly binding to and activating the RAR-related orphan receptor (ROR)A. In addition, we found that NDRG2 overexpression suppressed inflammation via activation of interleukin (IL)-6/Janus kinase (JAK)2/signal transducer and activator of transcription (STAT)3 signaling. CONCLUSIONS: Our data indicate that Dp44mT may serve as an effective drug for the treatment of glioma by targeting RORA and enhancing NDRG2-mediated IL-6/JAK2/STAT3 signaling.
        
Title: Plasma cholinesterase is associated with Chinese adolescent overweight or obesity and metabolic syndrome prediction Han Y, Ma Y, Liu Y, Zhao Z, Zhen S, Yang X, Xu Z, Wen D Ref: Diabetes Metab Syndr Obes, 12:685, 2019 : PubMed
Purpose: To determine the plasma concentrations of butyrylcholinesterase (BChE), also known as pseudocholinesterase, in different weight categories of adolescents, and to explore the possible association between plasma BChE and overweight (OW), obesity, and metabolic syndrome (MetS) in Chinese adolescents. Patients and methods: This cross-sectional study included 1,236 Chinese adolescents (194 obese [OB], 188 OW, 732 normal weight [NW], and 122 underweight [UW]). The biochemical variables and anthropometric variables of the study participants were evaluated. Plasma BChE level was measured by DGKC method. Results: OB was associated with a higher prevalence of upper strata plasma BChE levels when compared with the BChE levels in UW, NW, and OW group. A logistic regression analysis showed that plasma BChE was positively associated with the OB group when compared with the NW group. Boys in the OW group, but not the OB group, had a significantly higher prevalence of upper stratum of BChE levels. Plasma triglyceride, total cholesterol, low-density lipoprotein-cholesterol, and ApoB levels were positively associated with the upper stratum of BChE levels when compared with lower stratum. MetS and most of its components were more prevalent among subjects with upper stratum rather than lower stratum BChE levels. Receiver operating characteristic curves for plasma BChE in subjects with MetS indicated that the AUC was 0.80 (95%CI:0.70-0.90,P<0.001) and 0.89 (95%CI:0.82-0.95,P<0.001) in girls and boys, respectively. After adjusting for age, the multivariate-adjusted odds ratio for MetS in the upper stratum of BChE levels was 8.73 (95%CI: 3.49-21.84) in the boys cohorts and also in the girls cohorts (OR=1.71, 95%CI: 1.35-21.70). Conclusion: This study confirmed an association between BChE levels and weight status in Chinese adolescents, and demonstrated that the upper strata of plasma BChE levels were associated with being OW, and even more highly associated with obesity. Plasma BChE levels were positively associated with MetS and its components and could be useful for identifying adolescents with MetS.
Emerging data indicate that prenatal exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) could interfere with myogenic differentiation in vivo. Acetylcholinesterase (EC3.1.1.7; AChE), an enzyme critical for cholinergic neurotransmission, is abundantly expressed in neurons and mature myotubes, and we recently found that muscle AChE expression was suppressed in parallel with the inhibition of myogenic differentiation upon TCDD treatment in mouse C2C12cells. This TCDD-induced suppression of muscle AChE was proposed to involve an aryl hydrocarbon receptor (AhR)-independent mechanism, but the precise underlying mechanism remains unclear. Considering the widely recognized role of muscular activity in AChE expression and its potential crosstalk with the AhR signaling pathway, we sought to investigate the effect of TCDD on muscle AChE expression in the presence of muscular activity. Therefore, we employed a highly contractile rat primary skeletal muscle culture system in which AChE activity and the expression of genes related to it (AChE T subunit and collagen Q (ColQ)) were increased during the myogenic differentiation process. Although TCDD treatment successfully induced the expression of genes regulated by AhR activation, the treatment exerted no notable effects on myogenic differentiation. Moreover, muscle AChE enzymatic activity and mRNA level remained unchanged following TCDD treatment, and only ColQ mRNA expression was slightly increased after 4-day treatment with TCDD (10(-10)M). The compensatory role of muscle-contraction-related signaling pathways in this newly identified unresponsiveness of muscle AChE to TCDD warrants further investigation.
BACKGROUND: Acer yangbiense is a newly described critically endangered endemic maple tree confined to Yangbi County in Yunnan Province in Southwest China. It was included in a programme for rescuing the most threatened species in China, focusing on "plant species with extremely small populations (PSESP)". FINDINGS: We generated 64, 94, and 110 Gb of raw DNA sequences and obtained a chromosome-level genome assembly of A. yangbiense through a combination of Pacific Biosciences Single-molecule Real-time, Illumina HiSeq X, and Hi-C mapping, respectively. The final genome assembly is -666 Mb, with 13 chromosomes covering -97% of the genome and scaffold N50 sizes of 45 Mb. Further, BUSCO analysis recovered 95.5% complete BUSCO genes. The total number of repetitive elements account for 68.0% of the A. yangbiense genome. Genome annotation generated 28,320 protein-coding genes, assisted by a combination of prediction and transcriptome sequencing. In addition, a nearly 1:1 orthology ratio of dot plots of longer syntenic blocks revealed a similar evolutionary history between A. yangbiense and grape, indicating that the genome has not undergone a whole-genome duplication event after the core eudicot common hexaploidization. CONCLUSION: Here, we report a high-quality de novo genome assembly of A. yangbiense, the first genome for the genus Acer and the family Aceraceae. This will provide fundamental conservation genomics resources, as well as representing a new high-quality reference genome for the economically important Acer lineage and the wider order of Sapindales.
        
Title: Efficacy and outcomes of lipid resuscitation on organophosphate poisoning patients: A systematic review and meta-analysis Yu S, Zhang L, Gao Y, Walline J, Lu X, Ma Y, Zhu H, Yu X, Li Y Ref: Am J Emerg Med, 37:1611, 2019 : PubMed
OBJECTIVE: Organophosphate (OP) pesticides are still widely available in developing countries, leading to numerous accidental or suicidal poisonings every year. Lipid emulsion treatments are commonly used in resuscitating OP poisoning patients but few studies regarding their use have been reported. Our meta-analysis aimed to analyze the efficacy and outcomes of lipid resuscitation on OP poisoning patients. METHODS: A systematic search for associated studies was conducted in Pubmed, EMBASE, MEDLINE, the Cochrane Library and the Chinese National Knowledge Infrastructure. Collected data was pooled using Revman v5.3. Outcomes included prognosis (cured vs. mortality rates), hepatic function (serum ALT, AST, Total Bilirubin (TBIL) level), serum acetylcholinesterase (AchE) level and respiratory function (rate of respiratory muscular paralysis). RESULTS: Seven randomized controlled studies consisting of 630 patients meeting inclusion criteria were identified. Lipid emulsion helped to improve the cure rate [OR=2.54, 95% CI (1.33, 4.86), p=0.005] and lower the mortality rate [OR=0.31, 95% CI (0.13, 0.74), p=0.009]. Serum ALT, AST and TBIL in patients undergoing lipid resuscitation were lower than those in the control groups [ALT, SMD=-1.52, 95% CI (-2.64, 0.40), p=0.008; AST, SMD=-1.66, 95% CI (-3.15, 0.16), p=0.03; TBIL, SMD=-1.26, 95% CI (-2.32, 0.20), p=0.02]. Serum AchE level were increased in patients treated with lipid emulsion [SMD=2.15, 95% CI (1.60, 2.71), p<0.00001]. Rate of respiratory muscular paralysis was lower in patients undergoing lipid resuscitation than those in the control groups [OR=0.19, 95% CI (0.05, 0.71), p=0.01]. CONCLUSION: Based on our meta-analysis of included RCT reports, lipid resuscitation seems likely to help improve prognosis and liver function of OP poisoning patients. However, larger multi-center RCTs are still recommended.
Sensors based on graphene are promising devices for chemical and biological detection owing to their high sensitivity, biocompatibility, and low costs. However, for chiral recognition, which is very important in biological systems, graphene sensors remain unable to discriminate enantiomers. Here, using chiral pesticide molecules as an example, we realized a highly sensitive graphene chiral sensor by modification with acetylcholinesterase (AChE). Quantum chemical simulations indicate that the inhibition effect of the enantiomer on AChE was transferred to graphene, which allowed for the electrical detection of chiral molecules. Under an operating voltage of 1 V, the sensitivity of the device reached 0.34 mug/L and 0.32 mug/L for (+)/(-)-methamidophos, respectively, which is much higher than by circular dichroism (6.90 mg/L and 5.16 mg/L, respectively). Furthermore, real-time, rapid detection was realized by combining with smartphones and wireless transmission.
        
Title: Enhanced Poly(ethylene terephthalate) Hydrolase Activity by Protein Engineering Ma Y, Yao M, Li B, Ding M, He B, Chen S, Zhou X, Yuan Y Ref: Engineering (Beijing), 4:888, 2018 : PubMed
Poly(ethylene terephthalate) hydrolase (PETase) from Ideonella sakaiensis exhibits a strong ability to degrade poly(ethylene terephthalate) (PET) at room temperature, and is thus regarded as a potential tool to solve the issue of polyester plastic pollution. Therefore, we explored the interaction between PETase and the substrate (a dimer of the PET monomer ethylene terephthalate, 2PET), using a model of PETase and its substrate. In this study, we focused on six key residues around the substrate-binding groove in order to create novel high-efficiency PETase mutants through protein engineering. These PETase mutants were designed and tested. The enzymatic activities of the R61A, L88F, and I179F mutants, which were obtained with a rapid cell-free screening system, exhibited 1.4 fold, 2.1 fold, and 2.5 fold increases, respectively, in comparison with wild-type PETase. The I179F mutant showed the highest activity, with the degradation rate of a PET film reaching 22.5 mg per micromol/L PETase per day. Thus, this study has created enhanced artificial PETase enzymes through the rational protein engineering of key hydrophobic sites, and has further illustrated the potential of biodegradable plastics.
Artemisia annua, commonly known as sweet wormwood or Qinghao, is a shrub native to China and has long been used for medicinal purposes. A. annua is now cultivated globally as the only natural source of a potent anti-malarial compound, artemisinin. Here, we report a high-quality draft assembly of the 1.74-gigabase genome of A. annua, which is highly heterozygous, rich in repetitive sequences, and contains 63 226 protein-coding genes, one of the largest numbers among the sequenced plant species. We found that, as one of a few sequenced genomes in the Asteraceae, the A. annua genome contains a large number of genes specific to this large angiosperm clade. Notably, the expansion and functional diversification of genes encoding enzymes involved in terpene biosynthesis are consistent with the evolution of the artemisinin biosynthetic pathway. We further revealed by transcriptome profiling that A. annua has evolved the sophisticated transcriptional regulatory networks underlying artemisinin biosynthesis. Based on comprehensive genomic and transcriptomic analyses we generated transgenic A. annua lines producing high levels of artemisinin, which are now ready for large-scale production and thereby will help meet the challenge of increasing global demand of artemisinin.
The overuse of antibiotics in animal agriculture and medicine has caused a series of potential threats to public health. Macleaya cordata is a medicinal plant species from the Papaveraceae family, providing a safe resource for the manufacture of antimicrobial feed additive for livestock. The active constituents from M. cordata are known to include benzylisoquinoline alkaloids (BIAs) such as sanguinarine (SAN) and chelerythrine (CHE), but their metabolic pathways have yet to be studied in this non-model plant. The active biosynthesis of SAN and CHE in M. cordata was first examined and confirmed by feeding (13)C-labeled tyrosine. To gain further insights, we de novo sequenced the whole genome of M. cordata, the first to be sequenced from the Papaveraceae family. The M. cordata genome covering 378 Mb encodes 22,328 predicted protein-coding genes with 43.5% being transposable elements. As a member of basal eudicot, M. cordata genome lacks the paleohexaploidy event that occurred in almost all eudicots. From the genomics data, a complete set of 16 metabolic genes for SAN and CHE biosynthesis was retrieved, and 14 of their biochemical activities were validated. These genomics and metabolic data show the conserved BIA metabolic pathways in M. cordata and provide the knowledge foundation for future productions of SAN and CHE by crop improvement or microbial pathway reconstruction.
        
Title: What is the impact of PCSK9 rs505151 and rs11591147 polymorphisms on serum lipids level and cardiovascular risk: a meta-analysis Qiu C, Zeng P, Li X, Zhang Z, Pan B, Peng ZYF, Li Y, Ma Y, Leng Y, Chen R Ref: Lipids Health Dis, 16:111, 2017 : PubMed
BACKGROUND: PCSK9 rs505151 and rs11591147 polymorphisms are identified as gain- and loss-of-function mutations, respectively. The effects of these polymorphisms on serum lipid levels and cardiovascular risk remain to be elucidated. METHODS: In this meta-analysis, we explored the association of PCSK9 rs505151 and rs11591147 polymorphisms with serum lipid levels and cardiovascular risk by calculating the standardized mean difference (SMD) and odds ratios (OR) with 95% confidence intervals (CI). RESULTS: Pooled results analyzed under a dominant genetic model indicated that the PCSK9 rs505151 G allele was related to higher levels of triglycerides (SMD: 0.14, 95% CI: 0.02 to 0.26, P = 0.021, I2 = 0) and low-density lipoproteins cholesterol (LDL-C) (SMD: 0.17, 95% CI: 0.00 to 0.35, P = 0.046, I2 = 75.9%) and increased cardiovascular risk (OR: 1.50, 95% CI: 1.19 to 1.89, P = 0.0006, I2 = 48%). The rs11591147 T allele was significantly associated with lower levels of total cholesterol (TC) and LDL-C (TC, SMD: -0.45, 95% CI: -0.57 to -0.32, P = 0.000, I2 = 0; LDL-C, SMD: -0.44, 95% CI: -0.55 to -0.33, P = 0.000, I2 = 0) and decreased cardiovascular risk (OR: 0.77, 95% CI: 0.60 to 0.98, P = 0.031, I2 = 59.9) in Caucasians. CONCLUSIONS: This study indicates that the variant G allele of PCSK9 rs505151 confers increased triglyceride (TG) and LDL-C levels, as well as increased cardiovascular risk. Conversely, the variant T allele of rs11591147 protects carriers from cardiovascular disease susceptibility and lower TC and LDL-C levels in Caucasians. These findings provide useful information for researchers interested in the fields of PCSK9 genetics and cardiovascular risk prediction not only for designing future studies, but also for clinical and public health applications.
Lipid droplet (LD) lipolysis in brown adipose tissue (BAT) is generally considered to be required for cold-induced nonshivering thermogenesis. Here, we show that mice lacking BAT Comparative Gene Identification-58 (CGI-58), a lipolytic activator essential for the stimulated LD lipolysis, have normal thermogenic capacity and are not cold sensitive. Relative to littermate controls, these animals had higher body temperatures when they were provided food during cold exposure. The increase in body temperature in the fed, cold-exposed knockout mice was associated with increased energy expenditure and with increased sympathetic innervation and browning of white adipose tissue (WAT). Mice lacking CGI-58 in both BAT and WAT were cold sensitive, but only in the fasted state. Thus, LD lipolysis in BAT is not essential for cold-induced nonshivering thermogenesis in vivo. Rather, CGI-58-dependent LD lipolysis in BAT regulates WAT thermogenesis, and our data uncover an essential role of WAT lipolysis in fueling thermogenesis during fasting.
        
Title: The Inhibitory Effect of alpha/beta-Hydrolase Domain-Containing 6 (ABHD6) on the Surface Targeting of GluA2- and GluA3-Containing AMPA Receptors Wei M, Jia M, Zhang J, Yu L, Zhao Y, Chen Y, Ma Y, Zhang W, Shi YS, Zhang C Ref: Front Mol Neurosci, 10:55, 2017 : PubMed
The alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors (AMPARs) are major excitatory receptors that mediate fast neurotransmission in the mammalian brain. The surface expression of functional AMPARs is crucial for synaptic transmission and plasticity. AMPAR auxiliary subunits control the biosynthesis, membrane trafficking, and synaptic targeting of AMPARs. Our previous report showed that alpha/beta-hydrolase domain-containing 6 (ABHD6), an auxiliary subunit for AMPARs, suppresses the membrane delivery and function of GluA1-containing receptors in both heterologous cells and neurons. However, it remained unclear whether ABHD6 affects the membrane trafficking of glutamate receptor subunits, GluA2 and GluA3. Here, we examine the effects of ABHD6 overexpression in HEK293T cells expressing GluA1, GluA2, GluA3, and stargazin, either alone or in combination. The results show that ABHD6 suppresses the glutamate-induced currents and the membrane expression of AMPARs when expressing GluA2 or GluA3 in the HEK293T cells. We generated a series of GluA2 and GluA3 C-terminal deletion constructs and confirm that the C-terminus of GluAs is required for ABHD6's inhibitory effects on glutamate-induced currents and surface expression of GluAs. Meanwhile, our pull-down experiments reveal that ABHD6 binds to GluA1-3, and deletion of the C-terminal domain of GluAs abolishes this binding. These findings demonstrate that ABHD6 inhibits the AMPAR-mediated currents and its surface expression, independent of the type of AMPAR subunits, and this inhibitor's effects are mediated through the binding with the GluAs C-terminal regions.
        
Title: Carbon quantum dots as fluorescence resonance energy transfer sensors for organophosphate pesticides determination Wu X, Song Y, Yan X, Zhu C, Ma Y, Du D, Lin Y Ref: Biosensors & Bioelectronics, 94:292, 2017 : PubMed
Carbon quantum dots (CQDs) obtained from natural organics attract significant attention due to the abundance of carbon sources, varieties of heteroatom doping (such as N, S, P) and good biocompatibility of precursor. In this study, tunable fluorescence emission CQDs originated from chlorophyll were synthesized and characterized. The fluorescence emission can be effectively quenched by gold nanoparticles (Au NPs) via fluorescence resonance energy transfer (FRET). Thiocholine, which was produced from acetylthiocholine (ATC) by the hydrolysis of butyrylcholinesterase (BChE), could cause the aggregation of Au NPs and the corresponding recovery of FRET-quenched fluorescence emission. The catalytic activity of BChE could be irreversibly inhibited by organophosphorus pesticides (OPs), thus, the recovery effect was reduced. By evaluating the fluorescence emission intensity of CQDs, a FRET-based sensing platform for OPs determination was established. Paraoxon was studied as an example of OPs. The sensing platform displayed a linear relationship with the logarithm of the paraoxon concentrations in the range of 0.05-50mugL-1 and the limit of detection (LOD) was 0.05mugL-1. Real sample study in tap and river water revealed that this sensing platform was repeatable and accurate. The results indicate that the OP sensor is promising for applications in food safety and environmental monitoring.
        
Title: Synthesis and biological evaluation of deferiprone-resveratrol hybrids as antioxidants, Abeta(1-42) aggregation inhibitors and metal-chelating agents for Alzheimer's disease Xu P, Zhang M, Sheng R, Ma Y Ref: Eur Journal of Medicinal Chemistry, 127:174, 2017 : PubMed
A series of deferiprone-resveratrol hybrids have been designed and synthesized as multitarget-directed ligands (MTDLs) through merging the chelating moiety 3-hydroxypyridin-4-one into the structure of resveratrol, a natural antioxidant agent and beta-amyloid peptide (Abeta) aggregation inhibitor. The in vitro biological evaluation revealed that most of these newly synthesized compounds exhibited good inhibitory activity against self-induced Abeta(1-42) aggregation, excellent antioxidant activity and potent metal chelating capability. Compounds 3i and 4f were identified as the most promising MTDLs with triple functions, possessing micromolar IC(50) values for Abeta(1-42) aggregation inhibition, greater 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS(*+)) scavenging activity than Trolox and similar pFe(III) values to that of deferiprone.
Cerebroprotein hydrolysate is an extract from porcine brain tissue that acts on the central nervous system in various ways to protect neurons and improve memory, attention, and vigilance. This study examined the effect and mechanism of cerebroprotein hydrolysate on learning and memory in mice with scopolamine-induced impairment. Mice were given an intraperitoneal injection of scopolamine hydrobromide to establish a murine model of learning and memory impairment. After 35 successive days of cerebroprotein hydrolysate treatment, their behaviors were observed in the Morris water maze and step-down test. Superoxide dismutase (SOD), Na+-K+-ATPase, and acetylcholinesterase (AChE) activity, and malondialdehyde (MDA), gamma-aminobutyric acid (GABA), and glutamic acid (Glu) levels in the brain tissue of the mice were determined, and pathological changes in the hippocampus were examined. The results of the water-maze test showed that cerebroprotein hydrolysate shortened the escape latency and increased the number of platform crossings. In the step-down test, cerebroprotein hydrolysate treatment prolonged the step-down latency and reduced the number of errors; cerebroprotein hydrolysate increased the activity of SOD, Na+-K+-ATPase, and AChE, reduced the levels of MDA, decreased the Glu/GABA ratio in brain tissue, and reduced pathological changes in the hippocampus. The results indicate that cerebroprotein hydrolysate can improve learning and memory in mice with scopolamine-induced impairment. This effect may be associated with its ability to reduce injury caused by free radicals, improve acetylcholine function, and modulate the Glu/GABA learning and memory regulation system, reducing excitotoxicity caused by Glu.
        
Title: High-level expression of a ZEN-detoxifying gene by codon optimization and biobrick in Pichia pastoris Xiang L, Wang Q, Zhou Y, Yin L, Zhang G, Ma Y Ref: Microbiol Res, 193:48, 2016 : PubMed
The mycotoxin zearalenone (ZEN) can be degraded by a lactone hydrolase ZHD, which was derived from Gliocladium roseum. Here, based on the native ZHD encoding gene zhd101, a codon optimized zhd gene was synthesized, which was used for high expression of ZHD in Pichia pastoris GS115. Meanwhile, to further improve the expression of recombinant ZHD, the plasmids containing 1 to 4 copies of the zhd expression cassette were constructed, respectively, using the biobrick method. The protein expression in the recombinant P. pastoris X3c, which was transformed with the plasmid containing 3 copies of zhd expression cassette, was the highest. In addition, the enzymatic activity of ZHD against ZEN was defined for the first time based on a standard curve of peak area vs ZEN concentration. The ZEN degradation activity of ZHD from shake flask fermentation was calculated as 22.5U/mL with the specific activity of 4976.5U/mg. Furthermore, the high-density fermentation of P. pastoris X3c strain was also performed in 5L fermenter. The maximum enzyme activity of the supernatant was 150.1U/mL, which were 6.7-fold higher than that of the shake flask fermentation.
        
Title: Baicalin alleviates diabetesassociated cognitive deficits via modulation of mitogen-activated protein kinase signaling, brainderived neurotrophic factor and apoptosis Ma P, Mao XY, Li XL, Ma Y, Qiao YD, Liu ZQ, Zhou HH, Cao YG Ref: Mol Med Rep, 12:6377, 2015 : PubMed
Baicalin is an important active component of the medicinal herb Scutellaria baicalensis Georgi and has shown a variety of pharmacological actions. The present study aimed to evaluate the neuroprotective effects of baicalin against diabetesassociated cognitive deficits (DACD) in rats and to elucidate the potential molecular mechanisms of action. A rat model of diabetes mellitus was prepared by intraperitoneal injection of streptozotocin. After the successful establishment of the diabetic rat model, baicalin (50, 100 and 200 mg/kg) or vehicle was administrated for seven weeks. Learning and memory function were assessed using the Morris water maze test. At the end of the experiment, the activities of acetylcholinesterase (AChE) and choline acetylase (ChAT) were determined using commercial kits. Furthermore, the expression of proteins involved in mitogenactivated protein kinase (MAPK) cascades [extracellular signalregulated kinase (ERK), cJun Nterminal kinase (JNK) and p38], brainderived neurotrophic factor (BDNF) and apoptosisassociated proteins [caspase3, B-cell lymphoma 2 (Bcl2) and Bcl-2-associated X protein (Bax)] were detected by western blot analysis. Caspase3 activity was also analyzed using a commercial kit. The results demonstrated that diabetic rats exhibited decreases in body weight, decreases in the percentage of time spent in the target quadrant and the number of times of crossing the platform in the water maze test, as well as decreases in neuronal survival, ChAT, phosphorylated (p)ERK, BDNF and Bcl2. Furthermore, diabetic rats showed increases in escape latency and mean path length in the water maze test, increases in the levels of hippocampal AChE, pJNK, pp38, caspase3 and Bax as well as plasma glucose. However, in diabetic rats treated with baicalin, all of the abovementioned observations were obviously reversed. The findings suggested that baicalin exerts neuroprotective effects against DACD via modulation of MAPK cascades, BDNF and apoptosis.
        
Title: Extracellular expression of natural cytosolic arginine deiminase from Pseudomonas putida and its application in the production of l-citrulline Su L, Ma Y, Wu J Ref: Bioresour Technol, 196:176, 2015 : PubMed
The Pseudomonas putida arginine deiminase (ADI), a natural cytosolic enzyme, and Thermobifida fusca cutinase were co-expressed in Escherichia coli, and the optimized cutinase gene was used for increasing its expression level. 90.9% of the total ADI protein was released into culture medium probably through a nonspecific leaking mechanism caused by the co-expressed cutinase. The enzymatic properties of the extracellular ADI were found to be similar to those of ADI prepared by conventional cytosolic expression. Extracellular production of ADI was further scaled up in a 3-L fermentor. When the protein expression was induced by IPTG (25.0muM) and lactose (0.1gL-1h-1) at 30 degrees C, the extracellular ADI activity reached 101.2UmL-1, which represented the highest ADI production ever reported. In addition, the enzymatic synthesis of l-citrulline was performed using the extracellularly expressed ADI, and the conversion rate reached 100% with high substrate concentration at 650gL-1.
Intramyocellular accumulation of lipids is often associated with insulin resistance. Deficiency of comparative gene identification-58 (CGI-58) causes cytosolic deposition of triglyceride (TG)-rich lipid droplets in most cell types, including muscle due to defective TG hydrolysis. It was unclear, however, whether CGI-58 deficiency-induced lipid accumulation in muscle influences insulin sensitivity. Here we show that muscle-specific CGI-58 knockout mice relative to their controls have increased glucose tolerance and insulin sensitivity on a Western-type high-fat diet, despite TG accumulation in both heart and oxidative skeletal muscle and cholesterol deposition in heart. Although the intracardiomyocellular lipid deposition results in cardiac ventricular fibrosis and systolic dysfunction, muscle-specific CGI-58 knockout mice show increased glucose uptake in heart and soleus muscle, improved insulin signaling in insulin-sensitive tissues, and reduced plasma concentrations of glucose, insulin, and cholesterol. Hepatic contents of TG and cholesterol are also decreased in these animals. Cardiac steatosis is attributable, at least in part, to decreases in cardiac TG hydrolase activity and peroxisome proliferator-activated receptor-alpha/peroxisome proliferator-activated receptor-gamma coactivator-1-dependent mitochondrial fatty acid oxidation. In conclusion, muscle CGI-58 deficiency causes cardiac dysfunction and fat deposition in oxidative muscles but induces a series of favorable metabolic changes in mice fed a high-fat diet.
Adzuki bean (Vigna angularis), an important legume crop, is grown in more than 30 countries of the world. The seed of adzuki bean, as an important source of starch, digestible protein, mineral elements, and vitamins, is widely used foods for at least a billion people. Here, we generated a high-quality draft genome sequence of adzuki bean by whole-genome shotgun sequencing. The assembled contig sequences reached to 450 Mb (83% of the genome) with an N50 of 38 kb, and the total scaffold sequences were 466.7 Mb with an N50 of 1.29 Mb. Of them, 372.9 Mb of scaffold sequences were assigned to the 11 chromosomes of adzuki bean by using a single nucleotide polymorphism genetic map. A total of 34,183 protein-coding genes were predicted. Functional analysis revealed that significant differences in starch and fat content between adzuki bean and soybean were likely due to transcriptional abundance, rather than copy number variations, of the genes related to starch and oil synthesis. We detected strong selection signals in domestication by the population analysis of 50 accessions including 11 wild, 11 semiwild, 17 landraces, and 11 improved varieties. In addition, the semiwild accessions were illuminated to have a closer relationship to the cultigen accessions than the wild type, suggesting that the semiwild adzuki bean might be a preliminary landrace and play some roles in the adzuki bean domestication. The genome sequence of adzuki bean will facilitate the identification of agronomically important genes and accelerate the improvement of adzuki bean.
        
Title: Protective effect of apple (Ralls) polyphenol extract against aluminum-induced cognitive impairment and oxidative damage in rat Cheng D, Xi Y, Cao J, Cao D, Ma Y, Jiang W Ref: Neurotoxicology, 45C:111, 2014 : PubMed
Aluminum (Al) has long been implicated in the pathogenesis of Alzheimer's disease (AD). Dietary polyphenols have been strongly associated with reduced risk of AD and the other nervous diseases. We aimed to evaluate the preventive effect of the apple polyphenol extract (APE) on Al-induced biotoxicity, in order to provide a new focus on the design of strategies to prevent AD and the other human diseases related to Al overload. Control, Al-treated (171.8mg Alkg-1day-1 10 weeks), APE+Al (Al-treatment as previously plus 200mgkg-1day-1 10 weeks), and group of APE per se were used. Al intake caused memory impairment, significant decrease of acetylcholinesterase, CK, SOD, CAT activity and the rate of ATP synthesis, increase the Al content, the level of malondialdehyde and beta-amyloid42. Administration of APE significantly improved memory retention, attenuated oxidative damage, acetylcholinesterase activity and Al level in Al treated rats. Furthermore, chlorogenic acid (ChA) was used for analyzing stability of polyphenols-Al3+ complex. LogK1 was 10.51, and the mole ratio of Al3+ to ligand was 1:1. We further found that the amounts of Al increased significantly in feces of the rats gavaged with AlCl3 plus ChA compared with AlCl3. Our finding has shown APE has neuroprotective effects against Al-induced biotoxicity. Chelating with Al and disturbing its absorption could account for the neuroprotective roles of dietary polyphenols against Al toxicity.
        
Title: Increases in levels of epoxyeicosatrienoic and dihydroxyeicosatrienoic acids (EETs and DHETs) in liver and heart in vivo by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and in hepatic EET:DHET ratios by cotreatment with TCDD and the soluble epoxide hydrolase inhibitor AUDA Diani-Moore S, Ma Y, Gross SS, Rifkind AB Ref: Drug Metabolism & Disposition: The Biological Fate of Chemicals, 42:294, 2014 : PubMed
The environmental toxin and carcinogen 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, dioxin) binds and activates the transcription factor aryl hydrocarbon receptor (AHR), inducing CYP1 family cytochrome P450 enzymes. CYP1A2 and its avian ortholog CYP1A5 are highly active arachidonic acid epoxygenases. Epoxygenases metabolize arachidonic acid to four regioisomeric epoxyeicosatrienoic acids (EETs) and selected monohydroxyeicosatetraenoic acids (HETEs). EETs can be further metabolized by epoxide hydrolases to dihydroxyeicosatrienoic acids (DHETs). As P450-arachidonic acid metabolites affect vasoregulation, responses to ischemia, inflammation, and metabolic disorders, identification of their production in vivo is needed to understand their contribution to biologic effects of TCDD and other AHR activators. Here we report use of an acetonitrile-based extraction procedure that markedly increased the yield of arachidonic acid products by lipidomic analysis over a standard solid-phase extraction protocol. We show that TCDD increased all four EETs (5,6-, 8,9-, 11,12-, and 14,15-), their corresponding DHETs, and 18- and 20-HETE in liver in vivo and increased 5,6-EET, the four DHETs, and 18-HETE in heart, in a chick embryo model. As the chick embryo heart lacks arachidonic acid-metabolizing activity, the latter findings suggest that arachidonic acid metabolites may travel from their site of production to a distal organ, i.e., heart. To determine if the TCDD-arachidonic acid-metabolite profile could be altered pharmacologically, chick embryos were treated with TCDD and the soluble epoxide hydrolase inhibitor 12-(3-adamantan-1-yl-ureido)-dodecanoic acid (AUDA). Cotreatment with AUDA increased hepatic EET-to-DHET ratios, indicating that the in vivo profile of P450-arachidonic acid metabolites can be modified for potential therapeutic intervention.
Impairment of epithelial barrier is observed in various intestinal disorders including inflammatory bowel diseases (IBD). Numerous factors may cause temporary damage of the intestinal epithelium. A complex network of highly divergent factors regulates healing of the epithelium to prevent inflammatory response. However, the exact repair mechanisms involved in maintaining homeostatic intestinal barrier integrity remain to be clarified. In this study, we demonstrate that activation of M1 muscarinic acetylcholine receptor (mAChR) augments the restitution of epithelial barrier function in T84 cell monolayers after ethanol-induced epithelial injury, via ERK-dependent phosphorylation of focal adhesion kinase (FAK). We have shown that ethanol injury decreased the transepithelial electrical resistance (TER) along with the reduction of ERK and FAK phosphorylation. Carbachol (CCh) increased ERK and FAK phosphorylation with enhanced TER recovery, which was completely blocked by either MT-7 (M1 antagonist) or atropine. The CCh-induced enhancement of TER recovery was also blocked by either U0126 (ERK pathway inhibitor) or PF-228 (FAK inhibitor). Treatment of T84 cell monolayers with interferon-gamma (IFN-gamma) impaired the barrier function with the reduction of FAK phosphorylation. The CCh-induced ERK and FAK phosphorylation were also attenuated by the IFN-gamma treatment. Immunological and binding experiments exhibited a significant reduction of M1 mAChR after IFN-gamma treatment. The reduction of M1 mAChR in inflammatory area was also observed in surgical specimens from IBD patients, using immunohistochemical analysis. These findings provide important clues regarding mechanisms by which M1 mAChR participates in the maintenance of intestinal barrier function under not only physiological but also pathological conditions.
        
Title: Morphological diversity of GABAergic and cholinergic interneurons in the striatal dorsolateral and ventromedial regions of rats Ma Y, Feng Q, Ouyang L, Mu S, Liu B, Li Y, Chen S, Lei W Ref: Cellular Molecular Neurobiology, 34:351, 2014 : PubMed
The striatum plays a fundamental role in sensorimotor and cognitive functions of the body, and different sub-regions control different physiological functions. The striatal interneurons play important roles in the striatal function, yet their specific functions are not clearly elucidated so far. The present study aimed to investigate the morphological properties of the GABAergic interneurons expressing neuropeptide Y (NPY), calretinin (Cr), and parvalbumin (Parv) as well as the cholinergic interneurons expressing choline acetyltransferase (ChAT) in the striatal dorsolateral (DL) and ventromedial (VM) regions of rats using immunohistochemistry and Western blot. The present results showed that the somatic size of Cr+ was the smallest, while ChAT+ was the largest among the four types of interneurons. There was no regional difference in neuronal somatic size of all types of interneurons. Cr+ and Parv+ neurons were differentially distributed in the striatum. Moreover, Parv+ had the longest primary dendrites in the DL region, while NPY+ had the longest ones in the VM region of striatum. But there was regional difference in the length of primary dendrites of Parv. The numbers of primary dendrites of Parv+ were the largest in both DL and VM regions of striatum. Both Cr+ and Parv+ primary dendrites displayed regional difference in the striatum. Western blot further confirmed the regional differences in the protein expression level of Cr and Parv. Hence, the present study indicates that GABAergic and cholinergic interneurons might be involved in different physiological functions based on their morphological and distributional diversity in different regions of the rat striatum.
Overnutrition activates a proinflammatory program in macrophages to induce insulin resistance (IR), but its molecular mechanisms remain incompletely understood. Here, we show that saturated fatty acid and lipopolysaccharide, two factors implicated in high-fat diet (HFD)-induced IR, suppress macrophage CGI-58 expression. Macrophage-specific CGI-58 knockout (MaKO) in mice aggravates HFD-induced glucose intolerance and IR, which is associated with augmented systemic/tissue inflammation and proinflammatory activation of adipose tissue macrophages. CGI-58-deficient macrophages exhibit mitochondrial dysfunction due to defective peroxisome proliferator-activated receptor (PPAR)gamma signaling. Consequently, they overproduce reactive oxygen species (ROS) to potentiate secretion of proinflammatory cytokines by activating NLRP3 inflammasome. Anti-ROS treatment or NLRP3 silencing prevents CGI-58-deficient macrophages from oversecreting proinflammatory cytokines and from inducing proinflammatory signaling and IR in the cocultured fat slices. Anti-ROS treatment also prevents exacerbation of inflammation and IR in HFD-fed MaKO mice. Our data thus establish CGI-58 as a suppressor of overnutrition-induced NLRP3 inflammasome activation in macrophages.
How cancer cells shift metabolism to aerobic glycolysis is largely unknown. Here, we show that deficiency of alpha/beta-hydrolase domain-containing 5 (Abhd5), an intracellular lipolytic activator that is also known as comparative gene identification 58 (CGI-58), promotes this metabolic shift and enhances malignancies of colorectal carcinomas (CRCs). Silencing of Abhd5 in normal fibroblasts induces malignant transformation. Intestine-specific knockout of Abhd5 in Apc(Min/+) mice robustly increases tumorigenesis and malignant transformation of adenomatous polyps. In colon cancer cells, Abhd5 deficiency induces epithelial-mesenchymal transition by suppressing the AMPKalpha-p53 pathway, which is attributable to increased aerobic glycolysis. In human CRCs, Abhd5 expression falls substantially and correlates negatively with malignant features. Our findings link Abhd5 to CRC pathogenesis and suggest that cancer cells develop aerobic glycolysis by suppressing Abhd5-mediated intracellular lipolysis.
Comparative Gene Identification-58 (CGI-58), a lipid droplet (LD)-associated protein, promotes intracellular triglyceride (TG) hydrolysis in vitro. Mutations in human CGI-58 cause TG accumulation in numerous tissues including intestine. Enterocytes are thought not to store TG-rich LDs, but a fatty meal does induce temporary cytosolic accumulation of LDs. Accumulated LDs are eventually cleared out, implying existence of TG hydrolytic machinery in enterocytes. However, identities of proteins responsible for LD-TG hydrolysis remain unknown. Here we report that intestine-specific inactivation of CGI-58 in mice significantly reduces postprandial plasma TG concentrations and intestinal TG hydrolase activity, which is associated with a 4-fold increase in intestinal TG content and large cytosolic LD accumulation in absorptive enterocytes during the fasting state. Intestine-specific CGI-58 knockout mice also display mild yet significant decreases in intestinal fatty acid absorption and oxidation. Surprisingly, inactivation of CGI-58 in intestine significantly raises plasma and intestinal cholesterol, and reduces hepatic cholesterol, without altering intestinal cholesterol absorption and fecal neutral sterol excretion. In conclusion, intestinal CGI-58 is required for efficient postprandial lipoprotein-TG secretion and for maintaining hepatic and plasma lipid homeostasis. Our animal model will serve as a valuable tool to further define how intestinal fat metabolism influences the pathogenesis of metabolic disorders, such as obesity and type 2 diabetes.
        
Title: Genome Sequence of Klebsiella oxytoca M5al, a Promising Strain for Nitrogen Fixation and Chemical Production Bao G, Zhang Y, Du C, Chen Z, Li Y, Cao Z, Ma Y Ref: Genome Announc, 1:, 2013 : PubMed
Klebsiella oxytoca is an important microorganism for nitrogen fixation and chemical production. Here, we report an annotated draft genome of K. oxytoca strain M5al that contains 5,256 protein-coding genes and 95 structural RNAs, which provides a genetic basis for a better understanding of the physiology of this species.
Triglyceride (TG) accumulation in hepatocytes (hepatic steatosis) preludes the development of advanced nonalcoholic fatty liver diseases (NAFLDs) such as steatohepatitis, fibrosis, and cirrhosis. Mutations in human Comparative Gene Identification-58 (CGI-58) cause cytosolic TG-rich lipid droplets to accumulate in almost all cell types including hepatocytes. However, it is unclear if CGI-58 mutation causes hepatic steatosis locally or via altering lipid metabolism in other tissues. To directly address this question, we created liver-specific CGI-58 knockout (LivKO) mice. LivKO mice on standard chow diet displayed microvesicular and macrovesicular panlobular steatosis, and progressed to advanced NAFLD stages over time, including lobular inflammation and centrilobular fibrosis. Compared with CGI-58 floxed control littermates, LivKO mice showed 8-fold and 52-fold increases in hepatic TG content, which was associated with 40% and 58% decreases in hepatic TG hydrolase activity at 16 and 42 weeks, respectively. Hepatic cholesterol also increased significantly in LivKO mice. At 42 weeks, LivKO mice showed increased hepatic oxidative stress, plasma aminotransferases, and hepatic mRNAs for genes involved in fibrosis and inflammation, such as alpha-smooth muscle actin, collagen type 1 alpha1, tumor necrosis factor alpha, and interleukin-1beta. In conclusion, CGI-58 deficiency in the liver directly causes not only hepatic steatosis but also steatohepatitis and fibrosis.
Rice tillering is a multigenic trait that influences grain yield, but its regulation molecular module is poorly understood. Here we report that OsMADS57 interacts with OsTB1 (TEOSINTE BRANCHED1) and targets D14 (Dwarf14) to control the outgrowth of axillary buds in rice. An activation-tagged mutant osmads57-1 and OsMADS57-overexpression lines showed increased tillers, whereas OsMADS57 antisense lines had fewer tillers. OsMIR444a-overexpressing lines exhibited suppressed OsMADS57 expression and tillering. Furthermore, osmads57-1 was insensitive to strigolactone treatment to inhibit axillary bud outgrowth, and OsMADS57's function in tillering was dependent on D14. D14 expression was downregulated in osmads57-1, but upregulated in antisense and OsMIR444a-overexpressing lines. OsMADS57 bound to the CArG motif [C(A/T)TTAAAAAG] in the promoter and directly suppressed D14 expression. Interaction of OsMADS57 with OsTB1 reduced OsMADS57 inhibition of D14 transcription. Therefore, OsMIR444a-regulated OsMADS57, together with OsTB1, target D14 to control tillering. This regulation mechanism could have important application in rice molecular breeding programs focused on high grain yield.
        
Title: A novel alkaliphilic bacillus esterase belongs to the 13(th) bacterial lipolytic enzyme family Rao L, Xue Y, Zheng Y, Lu JR, Ma Y Ref: PLoS ONE, 8:e60645, 2013 : PubMed
BACKGROUND: Microbial derived lipolytic hydrolysts are an important class of biocatalysts because of their huge abundance and ability to display bioactivities under extreme conditions. In spite of recent advances, our understanding of these enzymes remains rudimentary. The aim of our research is to advance our understanding by seeking for more unusual lipid hydrolysts and revealing their molecular structure and bioactivities. METHODOLOGYPRINCIPAL FINDINGS: Bacillus. pseudofirmus OF4 is an extreme alkaliphile with tolerance of pH up to 11. In this work we successfully undertook a heterologous expression of a gene estof4 from the alkaliphilic B. pseudofirmus sp OF4. The recombinant protein called EstOF4 was purified into a homologous product by Ni-NTA affinity and gel filtration. The purified EstOF4 was active as dimer with the molecular weight of 64 KDa. It hydrolyzed a wide range of substrates including p-nitrophenyl esters (C2-C12) and triglycerides (C2-C6). Its optimal performance occurred at pH 8.5 and 50 degrees C towards p-nitrophenyl caproate and triacetin. Sequence alignment revealed that EstOF4 shared 71% identity to esterase Est30 from Geobacillus stearothermophilus with a typical lipase pentapeptide motif G91LS93LG95. A structural model developed from homology modeling revealed that EstOF4 possessed a typical esterase 6alpha/7beta hydrolase fold and a cap domain. Site-directed mutagenesis and inhibition studies confirmed the putative catalytic triad Ser93, Asp190 and His220. CONCLUSION: EstOF4 is a new bacterial esterase with a preference to short chain ester substrates. With a high sequence identity towards esterase Est30 and several others, EstOF4 was classified into the same bacterial lipolytic family, Family XIII. All the members in this family originate from the same bacterial genus, bacillus and display optimal activities from neutral pH to alkaline conditions with short and middle chain length substrates. However, with roughly 70% sequence identity, these enzymes showed hugely different thermal stabilities, indicating their diverse thermal adaptations via just changing a few amino acid residues.
Bats account for one-fifth of mammalian species, are the only mammals with powered flight, and are among the few animals that echolocate. The insect-eating Brandt's bat (Myotis brandtii) is the longest-lived bat species known to date (lifespan exceeds 40 years) and, at 4-8 g adult body weight, is the most extreme mammal with regard to disparity between body mass and longevity. Here we report sequencing and analysis of the Brandt's bat genome and transcriptome, which suggest adaptations consistent with echolocation and hibernation, as well as altered metabolism, reproduction and visual function. Unique sequence changes in growth hormone and insulin-like growth factor 1 receptors are also observed. The data suggest that an altered growth hormone/insulin-like growth factor 1 axis, which may be common to other long-lived bat species, together with adaptations such as hibernation and low reproductive rate, contribute to the exceptional lifespan of the Brandt's bat.
        
Title: Genome Sequence of Sporolactobacillus laevolacticus DSM442, an Efficient Polymer-Grade D-Lactate Producer from Agricultural Waste Cottonseed as a Nitrogen Source Wang H, Wang L, Ju J, Yu B, Ma Y Ref: Genome Announc, 1:, 2013 : PubMed
Sporolactobacillus laevolacticus DSM442 is an efficient polymer-grade d-lactic acid producer from low-cost agricultural waste cottonseed powder as the sole nitrogen source. Here we present a 3.59-Mb assembly of its genome sequence, which might provide useful information to further improve the strain for higher production titers.
Alicyclobacillus hesperidum is a thermoacidophilic bacterium. We isolated strain URH17-3-68 from hot spring sludge in Tengchong, Yunnan province, China. Its extracellular products include heat- and acid-stable enzymes which are important for industrial applications. Here we report the draft genome of this strain.
        
Title: Complete genome sequence of Clostridium acetobutylicum DSM 1731, a solvent-producing strain with multireplicon genome architecture Bao G, Wang R, Zhu Y, Dong H, Mao S, Zhang Y, Chen Z, Li Y, Ma Y Ref: Journal of Bacteriology, 193:5007, 2011 : PubMed
Clostridium acetobutylicum is an important microorganism for solvent production. We report the complete genome sequence of C. acetobutylicum DSM 1731, a genome with multireplicon architecture. Comparison with the sequenced type strain C. acetobutylicum ATCC 824, the genome of strain DSM1731 harbors a 1.7-kb insertion and a novel 11.1-kb plasmid, which might have been acquired during evolution.
Desformylflustrabromine (dFBr; 1), perhaps the first selective positive allosteric modulator of alpha4beta2 neuronal nicotinic acetylcholine (nACh) receptors, was deconstructed to determine which structural features contribute to its actions on receptors expressed in Xenopus ooycytes using two-electrode voltage clamp techniques. Although the intact structure of 1 was found to be optimal, several deconstructed analogs retained activity. Neither the 6-bromo substituent nor the entire 2-position chain is required for activity. In particular, reduction of the olefinic side chain of 1, as seen with 6, not only resulted in retention of activity/potency but in enhanced selectivity for alpha4beta2 versus alpha7 nACh receptors. Pharmacophoric features for the allosteric modulation of alpha4beta2 nACh receptors by 1 were identified.
Bacillus pseudofirmus OF4 is an extreme but facultative alkaliphile that grows non-fermentatively in a pH range from 7.5 to above 11.4 and can withstand large sudden increases in external pH. It is a model organism for studies of bioenergetics at high pH, at which energy demands are higher than at neutral pH because both cytoplasmic pH homeostasis and ATP synthesis require more energy. The alkaliphile also tolerates a cytoplasmic pH>9.0 at external pH values at which the pH homeostasis capacity is exceeded, and manages other stresses that are exacerbated at alkaline pH, e.g. sodium, oxidative and cell wall stresses. The genome of B.pseudofirmus OF4 includes two plasmids that are lost from some mutants without viability loss. The plasmids may provide a reservoir of mobile elements that promote adaptive chromosomal rearrangements under particular environmental conditions. The genome also reveals a more acidic pI profile for proteins exposed on the outer surface than found in neutralophiles. A large array of transporters and regulatory genes are predicted to protect the alkaliphile from its overlapping stresses. In addition, unanticipated metabolic versatility was observed, which could ensure requisite energy for alkaliphily under diverse conditions.
        
Title: Contribution of carboxylesterase in hamster to the intestinal first-pass loss and low bioavailability of ethyl piperate, an effective lipid-lowering drug candidate Lu Y, Bao N, Borjihan G, Ma Y, Hu M, Yu C, Li S, Jia J, Yang D, Wang Y Ref: Drug Metabolism & Disposition: The Biological Fate of Chemicals, 39:796, 2011 : PubMed
Ethyl piperate is an effective lipid-lowering drug candidate synthesized from piperine. However, its pharmacokinetic characteristics and oral absorption process remain unclear. A liquid chromatography-tandem mass spectrometry method was applied to determine the oral bioavailability of ethyl piperate. Simulated gastrointestinal pH conditions and intestinal washings were prepared to investigate their contributions to the loss of ethyl piperate. Hydrolysis by carboxylesterase (CES) was evaluated in vitro using microsomes and S9 fractions. In situ intestinal single-pass perfusion experiments were performed to estimate the role of CES in ethyl piperate absorption. The bioavailability of ethyl piperate was extremely low (0.47%) in hamster independent of gastrointestinal environmental effects. Ethyl piperate was a typical substrate of CES with kinetic parameters K(m) and V(max) of 7.56 +/- 1.491 muM and 0.16 +/- 0.008 nmol . min(-1) . mg protein(-1), respectively. CES was responsible for 85.8% of the intestinal hydrolysis of ethyl piperate. Specific inhibition of CES with bis-p-nitrophenyl phosphate (BNPP), decreased degradation clearance to 36% of control with no significant change in absorption clearance. This contrasted with the results of Caco-2 monolayer experiments, which showed a dramatic increase in the apparent permeability coefficient after BNPP treatment. mRNA levels for the CES isozyme, CES2A3, were similar among the three regions of hamster intestine and 60% less than those in liver; CES1B1 mRNA levels were even lower in the intestine and showed a proximal-to-distal decrease. In conclusion, CES markedly contributes to intestinal first-pass hydrolysis of ethyl piperate that is sufficient, but not necessary, to cause the observed extremely low bioavailability.
        
Title: A thermostable esterase from Thermoanaerobacter tengcongensis opening up a new family of bacterial lipolytic enzymes Rao L, Xue Y, Zhou C, Tao J, Li G, Lu JR, Ma Y Ref: Biochimica & Biophysica Acta, 1814:1695, 2011 : PubMed
An unidentified alpha/beta hydrolase gene lipA3 from thermostable eubacterium species Thermoanaerobacter tengcongensis MB4 was cloned and heterologously expressed by Escherichia coli BL21(DE3)pLysS. The purified recombinant enzyme EstA3 turned out to be a monomeric thermostable esterase with optimal activity at 70degC and pH 9.5. The enzyme showed lipolytic activity towards a wide range of ester substrates including p-nitrophenyl esters and triacylglycerides, with the highest activity being observed for p-nitrophenyl caproate at 150 U/mg and for Triacetin at 126U/mg, respectively. Phylogenetic analysis revealed that EstA3 did not show homology to any identified bacterial lipolytic hydrolases. Sequence alignment showed that there was a common pentapeptide CHSMG with a cysteine replacing the first glycine in most esterase and lipase conserved motif GXSXG. The catalytic triad of EstA3 is Ser92, Asp269 and His292, which was confirmed by site directed mutagenesis. Based on the enzymatic properties and sequence alignment we concluded that the esterase EstA3 represented a novel bacterial lipolytic enzyme group and in chronological order this group was assigned as Family XIV.
Bacillus coagulans 2-6 is an efficient producer of lactic acid. The genome of B. coagulans 2-6 has the smallest genome among the members of the genus Bacillus known to date. The frameshift mutation at the start of the d-lactate dehydrogenase sequence might be responsible for the production of high-optical-purity l-lactic acid.
        
Title: Decrease in the production of beta-amyloid by berberine inhibition of the expression of beta-secretase in HEK293 cells Zhu F, Wu F, Ma Y, Liu G, Li Z, Sun Y, Pei Z Ref: BMC Neurosci, 12:125, 2011 : PubMed
BACKGROUND: Berberine (BER), the major alkaloidal component of Rhizoma coptidis, has multiple pharmacological effects including inhibition of acetylcholinesterase, reduction of cholesterol and glucose levels, anti-inflammatory, neuroprotective and neurotrophic effects. It has also been demonstrated that BER can reduce the production of beta-amyloid40/42, which plays a critical and primary role in the pathogenesis of Alzheimer's disease. However, the mechanism by which it accomplishes this remains unclear. RESULTS: Here, we report that BER could not only significantly decrease the production of beta-amyloid40/42 and the expression of beta-secretase (BACE), but was also able to activate the extracellular signal-regulated kinase1/2 (ERK1/2) pathway in a dose- and time-dependent manner in HEK293 cells stably transfected with APP695 containing the Swedish mutation. We also find that U0126, an antagonist of the ERK1/2 pathway, could abolish (1) the activation activity of BER on the ERK1/2 pathway and (2) the inhibition activity of BER on the production of beta-amyloid40/42 and the expression of BACE. CONCLUSION: Our data indicate that BER decreases the production of beta-amyloid40/42 by inhibiting the expression of BACE via activation of the ERK1/2 pathway.
Mutations of Comparative Gene Identification-58 (CGI-58) in humans cause triglyceride (TG) accumulation in multiple tissues. Mice genetically lacking CGI-58 die shortly after birth due to a skin barrier defect. To study the role of CGI-58 in integrated lipid and energy metabolism, we utilized antisense oligonucleotides (ASOs) to inhibit CGI-58 expression in adult mice. Treatment with two distinct CGI-58-targeting ASOs resulted in approximately 80-95% knockdown of CGI-58 protein expression in both liver and white adipose tissue. In chow-fed mice, ASO-mediated depletion of CGI-58 did not alter weight gain, plasma TG, or plasma glucose, yet raised hepatic TG levels approximately 4-fold. When challenged with a high-fat diet (HFD), CGI-58 ASO-treated mice were protected against diet-induced obesity, but their hepatic contents of TG, diacylglycerols, and ceramides were all elevated, and intriguingly, their hepatic phosphatidylglycerol content was increased by 10-fold. These hepatic lipid alterations were associated with significant decreases in hepatic TG hydrolase activity, hepatic lipoprotein-TG secretion, and plasma concentrations of ketones, nonesterified fatty acids, and insulin. Additionally, HFD-fed CGI-58 ASO-treated mice were more glucose tolerant and insulin sensitive. Collectively, this work demonstrates that CGI-58 plays a critical role in limiting hepatic steatosis and maintaining hepatic glycerophospholipid homeostasis and has unmasked an unexpected role for CGI-58 in promoting HFD-induced obesity and insulin resistance.
        
Title: Development of recombinant Escherichia coli whole-cell biocatalyst expressing a novel alkaline lipase-coding gene from Proteus sp. for biodiesel production Gao B, Su E, Lin J, Jiang Z, Ma Y, Wei D Ref: J Biotechnol, 139:169, 2009 : PubMed
A lipase-producing bacterium K107 was isolated from soil samples of China and identified to be a strain of Proteus sp. With genome-walking method, the open reading frame of lipase gene lipK107, encoding 287 amino acids, was cloned and expressed in a heterologous host, Escherichia coli BL21 (DE3). The recombinant lipase was purified and characterized, and the optimum pH of the purified LipK107 was 9, at 35 degrees C. The recombinant E. coli expressing lipK107 was applied in biodiesel production in the form of whole-cell biocatalyst. Activity of the biocatalyst increased significantly when cells were permeabilized with 0.3% (w/v) cetyl-trimethylammoniumbromide (CTAB). This transesterification was carried out efficiently in a mixture containing 5M equivalents of methanol to the oil and 100% water by weight of the substrate. It was the first time to use E. coli whole-cell biocatalyst expressing lipase in biodiesel production, and the biodiesel reached a yield of nearly 100% after 12h reaction at the optimal temperature of 15 degrees C, which was the lowest temperature among all the known catalyst in biodiesel production.
Pre-clinical and human neuropharmacological evidence suggests a role of cholinergic modulation of monoamines as a pathophysiological and therapeutic mechanism in Alzheimer's disease. The present study measured the effects of treatment with the cholinesterase inhibitor and nicotinic receptor modulator, galantamine, on the cerebral metabolic response to the selective serotonin reuptake inhibitor, citalopram. Seven probable Alzheimer's disease patients and seven demographically comparable controls underwent two positron emission tomography (PET) glucose metabolism scans, after administration of a saline placebo infusion (Day 1) and after citalopram (40 mg, IV, Day 2). The scan protocol was repeated in the Alzheimer's disease patients 2 months after titration to a 24 mg galantamine dose. At baseline, cerebral glucose metabolism was reduced in Alzheimer's disease patients relative to controls in right middle temporal, left posterior cingulate and parietal cortices (precuneus and inferior parietal lobule), as expected. Both groups demonstrated acute decreases in cerebral glucose metabolism after citalopram to a greater extent in the Alzheimer's disease patients. In the patients, relative to the controls, citalopram decreased glucose metabolism to a greater extent in middle frontal gyrus (bilaterally), left middle temporal gyrus and right posterior cingulate prior to treatment. Galantamine treatment alone increased metabolism in the right precuneus, right inferior parietal lobule and right middle occipital gyrus. In contrast, during galantamine treatment, citalopram increased metabolism in the right middle frontal gyrus, right post-central gyrus, right superior and middle temporal gyrus and right cerebellum. The combined cerebral metabolic effects of galantamine and citalopram suggest, consistent with preclinical data, a synergistic interaction of cholinergic and serotonergic systems.
        
Title: Efficient display of active lipase LipB52 with a Pichia pastoris cell surface display system and comparison with the LipB52 displayed on Saccharomyces cerevisiae cell surface Jiang Z, Gao B, Ren R, Tao X, Ma Y, Wei D Ref: BMC Biotechnol, 8:4, 2008 : PubMed
BACKGROUND: For industrial bioconversion processes, the utilization of surface-displayed lipase in the form of whole-cell biocatalysts is more advantageous, because the enzymes are displayed on the cell surface spontaneously, regarded as immobilized enzymes. RESULTS: Two Pichia pastoris cell surface display vectors based on the flocculation functional domain of FLO with its own secretion signal sequence or the alpha-factor secretion signal sequence were constructed respectively. The lipase gene lipB52 fused with the FLO gene was successfully transformed into Pichia pastoris KM71. The lipase LipB52 was expressed under the control of the AOX1 promoter and displayed on Pichia pastoris KM71 cell surface with the two Pichia pastoris cell surface display vectors. Localization of the displayed LipB52 on the cell surface was confirmed by the confocal laser scanning microscopy (CLSM). The LipB52 displayed on the Pichia pastoris cell surface exhibited activity toward p-nitrophenol ester with carbon chain length ranging from C10 to C18, and the optimum substrate was p-nitrophenol-caprate (C10), which was consistent with it displayed on the Saccharomyces cerevisiae EBY100 cell surface. The hydrolysis activity of lipase LipB52 displayed on Pichia pastoris KM71-pLHJ047 and KM71-pLHJ048 cell surface reached 94 and 91 U/g dry cell, respectively. The optimum temperature of the displayed lipases was 40 degrees C at pH8.0, they retained over 90% activity after incubation at 60 degrees C for 2 hours at pH 7.0, and still retained 85% activity after incubation for 3 hours. CONCLUSION: The LipB52 displayed on the Pichia pastoris cell surface exhibited better stability than the lipase LipB52 displayed on Saccharomyces cerevisiae cell surface. The displayed lipases exhibited similar transesterification activity. But the Pichia pastoris dry cell weight per liter (DCW/L) ferment culture was about 5 times than Saccharomyces cerevisiae, the lipase displayed on Pichia pastoris are more suitable for whole-cell biocatalysts than that displayed on Saccharomyces cerevisiae cell surface.
        
Title: Mouse chromosome 11 harbors genetic determinants of hippocampal strain-specific nicotinic receptor expression Rogers SW, Weis JJ, Ma Y, Teuscher C, Gahring LC Ref: Hippocampus, 18:750, 2008 : PubMed
Differences between isogenic mouse strains in cellular expression of the neuronal nicotinic acetylcholine (ACh) receptor subunit alpha 4 (nAChR alpha 4) by the dorsal hippocampus are well known. To investigate further the genetic basis of these variations, expression of the nAChR alpha 4 subunit was measured in congenic mouse lines derived from two strains exhibiting notable divergence in the expression of this subunit: C3H and C57BL/6. Congenic lines carrying reciprocally introgressed regions (quantitative trait loci; QTL) from chromosomes 4, 5, and 12 each retained the phenotype most closely associated with the parental strain. However, in congenic lines harboring the reciprocal transfer of a chromosome 11 QTL, a characteristic difference in the ratio of interneurons versus astrocytes expressing nAChR alpha 4 in the CA1 region is reversed relative to the parental strain. These finding suggest that this chromosomal segment harbors genes that regulate strain distinct hippocampal morphology that is revealed by nAChR alpha 4 expression.
        
Title: Characterization of two novel lipase genes isolated directly from environmental sample Jiang Z, Wang H, Ma Y, Wei D Ref: Applied Microbiology & Biotechnology, 70:327, 2006 : PubMed
Two novel lipase genes (lipJ02, lipJ03) were isolated directly from environmental DNA via genome-walking method. Lipase gene lipJ02 contained an open reading frame (ORF) of 1,425 bp and encoded a 474-amino acids lipase protein, while lipase gene lipJ03 contained an ORF of 1,413 bp and encoded a 470-amino acids lipase protein. The lipase genes were cloned into expression vector pPIC9K and successfully integrated into a heterologous fungal host, Pichia pastoris KM71, and the recombinant P. pastoris were screened via a high-throughput method. The recombinants were induced by methanol to secrete active lipases into cultural medium. The recombinant lipases were also purified and characterized. The optimum temperature for the purified lipase LipJ02 and LipJ03 was 30 and 35 degrees C, respectively, at pH 8.0. They exhibited similar thermostability, but LipJ02 exhibited better pH stability than LipJ03.
        
Title: [Single nucleotide polymorphisms of genes associated with high density lipoprotein metabolism in Chinese population] Cui HB, Cui CC, Ma Y, Wang DQ, Huang C, Zhang AF, Lian JF, Su XM Ref: Zhonghua Yi Xue Yi Chuan Xue Za Zhi, 22:22, 2005 : PubMed
OBJECTIVE: To study the single nucleotide polymorphisms in genes associated with the high density lipoprotein (HDL) metabolism in Chinese population. METHODS: Two hundred and nine normal Han ethnic subjects, aged 59+/-10 years, were recruited from 5 medical centers in western part of China. DNA was extracted by proteinase K digestion, phenol and chloroform extraction as well as isopropanol precipitation. The polymerase chain reaction (PCR)-restriction fragment length polymorphisms (RFLP) in conjunction with sequencing were employed to test the single nucleotide polymorphisms (SNPs) in ATP-binding cassette transporter (ABCA1), cholesteryl ester transfer protein (CETP) and lipoprotein lipase (LPL) genes. RESULTS: The allelic frequencies of A and G of ABCA1 gene are 53.4% and 46.6%; of B2 and B1 allele of CETP, 41.0% and 59.0%; of HindIII (-) and (+) allele of LPL, 18.9% and 81.1%; and of PvuII(+) and (-) allele of LPL, 66.0% and 34.0%, respectively. All genotype frequencies fit well with the Hardy-Weinberg equilibrium; the significant linkage disequilibrium exists between LPL HindIII(+)and PvuII(+) polymorphisms. All of the RFLP in these genes result from the single nucleic substitution in fragment recognized by corresponding restriction enzymes. CONCLUSION: The genetic polymorphisms of ABCA1, LPL-HindIII and LPL-PvuII in Chinese Han ethnic population are significantly different from Caucasians residing in USA or Europe.
A novel lipase gene (lipB52) was isolated directly from the genomic DNA of Pseudomonas fluorescens B52 with the genome-walking method, an effective method for isolating lipase gene from bacteria. There was an open reading frame (ORF) of 1854 bp, which encoded 617 amino acids. The lipase gene (lipB52) was cloned into expression vector pPIC9K and successfully integrated into a heterologous fungal host, Pichia pastoris KM71, and the recombinant Pichia pastoris were screened with a high throughput method. The recombinant was induced by methanol to secrete active lipase into the culture medium. The recombinant lipase LipB52 was also purified and characterized. The optimum temperature for the purified lipase LipB52 was 40 degrees C at pH 8.0. It exhibited better thermostability and pH stability than its homologs.
        
Title: Adulticidal Activity of Five Essential Oils against Culex pipiens quinquefasciatus Yang P, Ma Y, Zheng S Ref: Journal of Pesticide Science, 30:84, 2005 : PubMed
The aim of this study is to observe the adulticidal activity of five essential oils against the mosquito Culex pipiens quinquefasciatus. Fumigating adulticidal activity was investigated by airtight fumigation in conical flasks. The result showed that the toxic effect of the five essential oils varied with the period of fumigation. Rutaceae oil was the most toxic of the five. Carvacryl oil had the shortest adulticidal time (6.087 min). The chemical components of rutaceae oil were analyzed by GC/MS. The major components were alpha-citral (33.50%) and citral (35.77%). Citral showed marked adulticidal activity in a short-term fumigation. All five essential oils had considerable adulticidal effects on Cx. pipiens quinquefasciatus.
        
Title: Cloning, identification and expression of an entE homologue angE from Vibrio anguillarum serotype O1 Liu Q, Ma Y, Wu H, Shao M, Liu H, Zhang Y Ref: Arch Microbiol, 181:287, 2004 : PubMed
Anguibactin, an important virulent factor in Vibrio anguillarum serotype O1, is synthesized by a nonribosomal peptide synthetases (NRPS) system encoded on a 65-kb virulence plasmid pJM1. angE, as one of the NRPS genes, is responsible for selecting and activating 2,3-dihydroxybenzoic acid (2,3-DHBA), an important precursor in anguibactin synthesis, into 2,3-DHBA-AMP by adenylylation in the presence of ATP. In this work, an entE homologue, angE, was identified on pEIB1 (a pJM1-like plasmid) from virulent V. anguillarum serotype O1 strain MVM425. A recombinant clone carrying the complete angE was able to complement an Escherichia coli entE mutant. The angE-encoded protein was overexpressed in E. coli and purified by a three-step procedure. Purified AngE was then used to establish an in vitro enzymatic reaction in which its enzymatic activity of 1-(5'-monophosphate adenyl) 2,3-dihydroxybenzoic acid ligase (2,3-DHBA-AMP ligase) was proved using HPLC to detect AMP formation in the reaction mixture. Moreover, evidence at the level of both transcription and translation confirmed that angE was actively expressed in vivo in V. anguillarum MVM425, and interestingly, unlike many other iron-uptake-system-related genes, its expression is not induced by a low iron concentration in the surrounding environment.
        
Title: Intramolecular disulfide bonds are required for folding hydrolase B into a catalytically active conformation but not for maintaining it during catalysis Song X, Gragen S, Li Y, Ma Y, Liu J, Yang D, Matoney L, Yan B Ref: Biochemical & Biophysical Research Communications, 319:1072, 2004 : PubMed
Carboxylesterases represent a large class of hydrolytic enzymes that are involved in lipid metabolism, pharmacological determination, and detoxication of organophosphorus pesticides. These enzymes have several notable structural features including two intramolecular disulfide bonds. This study was undertaken to test the hypothesis that the disulfide bonds are required during catalysis by stabilizing the catalytically active conformation. Hydrolase B, a rat liver microsomal carboxylesterase, was reduced by dithiothreitol, electrophoretically separated and assayed for hydrolysis. Contrary to the hypothesis, reduced hydrolase B was as active as the native enzyme on the hydrolysis of 1-naphthylacetate, and sulfhydryl alkylation following reduction caused no changes in the hydrolytic activity. Interestingly, substitution of a disulfide bond-forming cysteine with an alanine caused marked reduction or complete loss of the catalytic activity, suggesting that disulfide bond formation plays a role in the biosynthetic process of hydrolase B. In support of this notion, refolding experiments restored a significant amount of hydrolytic activity when hydrolase B was unfolded with urea alone. In contrast, little activity was restored when unfolding was performed in the presence of reducing agent dithiothreitol. These results suggest that formation of the disulfide bonds plays a critical role in folding hydrolase B into the catalytically active conformation, and that the disulfide bonds play little role or function redundantly in maintaining this conformation during catalysis.
Subthreshold-activating somatodendritic A-type potassium channels have fundamental roles in neuronal signaling and plasticity which depend on their unique cellular localization, voltage dependence, and kinetic properties. Some of the components of A-type K(+) channels have been identified; however, these do not reproduce the properties of the native channels, indicating that key molecular factors have yet to be unveiled. We purified A-type K(+) channel complexes from rat brain membranes and found that DPPX, a protein of unknown function that is structurally related to the dipeptidyl aminopeptidase and cell adhesion protein CD26, is a novel component of A-type K(+) channels. DPPX associates with the channels' pore-forming subunits, facilitates their trafficking and membrane targeting, reconstitutes the properties of the native channels in heterologous expression systems, and is coexpressed with the pore-forming subunits in the somatodendritic compartment of CNS neurons.
        
Title: DNA sequencing of a plasmid with virulence from marine fish pathogen Vibrio anguillarum Wu HZ, Zhang HZ, Lu CX, Liang N, Jin HY, Ma Y, Zhang YX Ref: Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai), 35:956, 2003 : PubMed
DNA sequence of a plasmid pEIB1 associated with virulence from the marine fish pathogen Vibrio anguillarum was determined using the methods of restriction endonuclease digestion, subcloning, and primer walking. The whole length of obtained pEIB1 DNA sequence was 66 164 bp, and the overall G+C content of DNA sequence is 42.7%. This sequence encodes 44 open reading frames containing the genes of DNA replication, biosynthesis and regulation of the siderophore anguibactin and transport of ferric-anguibactin complexes.
Thermoanaerobacter tengcongensis is a rod-shaped, gram-negative, anaerobic eubacterium that was isolated from a freshwater hot spring in Tengchong, China. Using a whole-genome-shotgun method, we sequenced its 2,689,445-bp genome from an isolate, MB4(T) (Genbank accession no. AE008691). The genome encodes 2588 predicted coding sequences (CDS). Among them, 1764 (68.2%) are classified according to homology to other documented proteins, and the rest, 824 CDS (31.8%), are functionally unknown. One of the interesting features of the T. tengcongensis genome is that 86.7% of its genes are encoded on the leading strand of DNA replication. Based on protein sequence similarity, the T. tengcongensis genome is most similar to that of Bacillus halodurans, a mesophilic eubacterium, among all fully sequenced prokaryotic genomes up to date. Computational analysis on genes involved in basic metabolic pathways supports the experimental discovery that T. tengcongensis metabolizes sugars as principal energy and carbon source and utilizes thiosulfate and element sulfur, but not sulfate, as electron acceptors. T. tengcongensis, as a gram-negative rod by empirical definitions (such as staining), shares many genes that are characteristics of gram-positive bacteria whereas it is missing molecular components unique to gram-negative bacteria. A strong correlation between the G + C content of tDNA and rDNA genes and the optimal growth temperature is found among the sequenced thermophiles. It is concluded that thermophiles are a biologically and phylogenetically divergent group of prokaryotes that have converged to sustain extreme environmental conditions over evolutionary timescale.
BACKGROUND/AIMS: Antibodies to caseinolytic protease P(177-194) (ClpP(177-194)) of the proteolytic subunit of the Clp complex of Escherichia coli (E. coli) are uniquely present in primary biliary cirrhosis (PBC). Molecular mimicry between the regulatory subunit ClpX and the principal T-cell epitope of pyruvate dehydrogenase complex (PDC-E2) in PBC, has been proposed to account for this. Since ClpP is highly conserved among bacteria we investigated whether the micro-organisms triggering these antibodies may be other than E. coli. METHODS/RESULTS: E. coli ClpP(177-194) is homologous with ClpP peptides of Yersinia enterocolitica (YEREN) and Haemophilus influenzae (HAEIN). Enzyme linked immunosorbent assay (ELISA) reactivity to these peptides was tested in 45 patients with PBC, 44 pathological and 32 healthy controls. Reactivity to at least one of the ClpP peptides was observed in 21 (47%) PBC patients, 5.8% pathological and 3.1% healthy controls (P<0.01 for all). Among these 21 seropositive PBC patients, 15 (71%) reacted to ECOLI ClpP(177-194), alone or in association with YEREN and/or HAEIN peptides, compared to three (14.2%) reactive with YEREN, two (9.5%) with YEREN/HAEIN and one (4.7%) with HAEIN peptide. Simultaneous reactivity to homologous sequences was due to cross-reactivity as confirmed by competition ELISAs. CONCLUSIONS: The PBC-specificity of anti-microbial ClpP reactivity is confirmed: the questions as to primary trigger(s) and relevance to PBC pathogenesis remain open.
Missense mutations in exon 5 of the LPL gene are the most common reported cause of LPL deficiency. Exon 5 is also the region with the strongest homology to pancreatic and hepatic lipase, and is conserved in LPL from different species. Mutant LPL proteins from post-heparin plasma from patients homozygous for missense mutations at amino acid positions 176, 188, 194, 205, and 207, and from COS cells transiently transfected with the corresponding cDNAs were quantified and characterized, in an attempt to determine which aspect of enzyme function was affected by each specific mutation. All but one of the mutant proteins were present, mainly as partially denatured LPL monomer, rendering further detailed assessment of their catalytic activity, affinity to heparin, and binding to lipoprotein particles difficult. However, the fresh unstable Gly(188)-->Glu LPL and the stable Ile(194)-->Thr LPL, although in native conformation, did not express lipase activity. It is proposed that many of the exon 5 mutant proteins are unable to achieve or maintain native dimer conformation, and that the Ile(194)-->Thr substitution interferes with access of lipid substrate to the catalytic pocket. These results stress the importance of conformational evaluation of mutant LPL. Absence of catalytic activity does not necessarily imply that the substituted amino acid plays a specific direct role in catalysis.
Two missense mutations in exon 6 of the LPL gene were identified on separate alleles in a Dutch patient with lipoprotein lipase (LPL) deficiency. The first mutation is a G1003-->A transition resulting in a D250N mutation, which has been shown previously to result in a catalytically defective protein in patients of French-Canadian ancestry. The second mutation, a C to G transition at nucleotide 1007, predicts a S251C residue change in the highly conserved region of LPL surrounding the loop structure the covers the catalytic triad. This mutation constitutes a novel defect among LPL gene mutations reported so far. Site-directed mutagenesis experiments provide in-vitro evidence for the complete loss of LPL activity resulting from this latter missense mutation. The G1003-->A nucleotide substitution underlying the Asp250 mutation deletes a TaqI endonuclease recognition site and the C1007-->G change that leads to the S251C alteration abolishes a HinfI recognition site. This will facilitate rapid screening for these mutations in LPL-deficient patients.
        
Title: A mutation in the lipoprotein lipase gene is the molecular basis of chylomicronemia in a colony of domestic cats Ginzinger DG, Lewis ME, Ma Y, Jones BR, Liu G, Jones SD Ref: Journal of Clinical Investigation, 97:1257, 1996 : PubMed
Members of a domestic cat colony with chylomicronemia share many phenotypic features with human lipoprotein lipase (LPL) deficiency. Biochemical analysis reveals that these cats do have defective LPL catalytic activity and have a clinical phenotype very similar to human LPL deficiency. To determine the molecular basis underlying this biochemical phenotype, we have cloned the normal and affected cat LPL cDNAs and shown that the affected cat has a nucleotide change resulting in a substitution of arginine for glycine at residue 412 in exon 8. In vitro mutagenesis and expression studies, in addition to segregation analysis, have shown that this DNA change is the cause of LPL deficiency in this cat colony. Reduced body mass, growth rates, and increased stillbirth rates are observed in cats homozygous for this mutation. These findings show that this LPL deficient cat can serve as an animal model of human LPL deficiency and will be useful for in vivo investigation of the relationship between triglyceride rich lipoproteins and atherogenic risk and for the assessment of new approaches for treatment of LPL deficiency, including gene therapy.
Approximately 1% to 2% of persons in the general population are homozygous for a lipoprotein receptor-binding defective form of apoE (apoE2/2). However, only a small percentage (2% to 5%) of all apoE2/2 homozygotes develop type III hyperlipoproteinemia. Interaction with other genetic and environmental factors are required for the expression of this lipid abnormality. We sought to investigate the possible role of LPL gene mutations in the development of hyperlipoproteinemia in apoE2/2 homozygotes and in apoE2 heterozygotes. As a first step, we performed DNA sequence analysis of all 10 LPL coding exons in 2 patients with the apoE2/2 genotype who had type III hyperlipoproteinemia and identified a single missense mutation (Asn 291-->Ser) in exon 6 of the LPL gene. The mutation was then found in 5 of 18 patients with type III hyperlipoproteinemia who had the apoE2/2 genotype (allele frequency = 13.9%; P < or = 7.4 x 10(-5)) and 6 of 22 hyperlipidemic E2 heterozygous patients with the apoE3/2 and E4/2 genotype (allele frequency = 13.6%; P = 2.2 x 10(-5)). In contrast, this mutation was found in only 3 of 230 normolipidemic controls (allele frequency = 0.7%). In vitro mutagenesis studies revealed that the Asn 291-->Ser mutant LPL had approximately 60% of LPL catalytic activity and approximately 70% of specific activity compared with wild-type LPL. The heparin-binding affinity of the mutant LPL was not impaired. Our data suggest that the Asn 291-->Ser substitution is likely to be a significant predisposing factor contributing to the expression of different forms of hyperlipidemia when associated with other genetic factors such as the presence of apoE2.
Mutations in the lipoprotein lipase (LPL) gene are the most common cause of familial chylomicronemia. Here we define the molecular basis of LPL deficiency in four patients of German, French, Dutch, and Chinese descent. We show that two of the probands of Dutch and Chinese origin have a previously described Arg243His mutation while the patients of German and French descent have a novel Arg243Cys substitution in their LPL gene. Haplotype analysis is in favour of two separate origins for the Arg243Cys substitution which together with the Arg243His mutation would implicate three recurrent mutations involving the first and second nucleotides of the codon encoding Arg243 of the LPL gene. The recurrent mutations affecting the first and second nucleotide of CGC coding for the normal Arg residue are support for the high mutability of CpG dinucleotides within the LPL gene.
        
Title: Mutagenesis in four candidate heparin binding regions (residues 279-282, 291-304, 390-393, and 439-448) and identification of residues affecting heparin binding of human lipoprotein lipase Ma Y, Henderson HE, Liu MS, Zhang H, Forsythe IJ, Clarke-Lewis I, Hayden MR, Brunzell JD Ref: J Lipid Res, 35:2049, 1994 : PubMed
Lipoprotein lipase (LPL) interaction with membrane-associated polyanions is a critical component of normal catalytic function. Two strong candidate binding regions, rich in arginine and lysine residues, have been defined in the N-terminal domain (aa279-282 and aa292-304) that show homology to the heparin-binding consensus sequences -X-B-B-X-B-X- and -X-B-B-B-X-X-B-X-, respectively. Additional candidate regions appear in the C-terminal domain, (residues 390-393), which are homologous to the thrombospondin heparin-binding repeat, and the positively charged terminal decapeptide (residues 439-448). To determine residues and domains critical to heparin binding, we have generated different LPL mutants that have alanine substitutions of single arginine and lysine residues and sequence interchanges with the homologous hepatic (HL) and pancreatic (PL) lipases. The mutant cDNAs were expressed in COS-1 cells and catalytically active mutants were assessed for binding to heparin-Sepharose. All the alanine substitutions within the two regions homologous to the heparin-binding consensus sequences in the N-terminal domain either abolished activity or produced a lowering of heparin binding affinity. None of the mutants in the C-terminal domain of LPL showed a loss of activity or a reduction in heparin binding affinity. These data demonstrate that charged residues at positions 279-282 and 292-304 of LPL are important for heparin binding affinity whereas the residues 390-393 and 439-448 in the C-terminal domain are not involved in heparin binding.
Partial deficiency in lipolysis usually results in only mild disturbances of lipid levels. However, when this is associated with impairment of the uptake of remnant particles and increased production of triglyceride-rich lipoproteins stimulated by environmental factors such as during normal pregnancy, chylomicronemia may ensue. We have previously reported a patient who had approximately 12% of normal LPL activity and developed severe chylomicronemia during pregnancy (Ma et al. 1993. J. Clin. Invest. 91: 1953-1958). Here we report four new patients with pregnancy-induced chylomicronemia. In the nonpregnant state, these patients had mild to modest elevation of triglyceride levels ranging from 80 to 623 mg/dl (0.9-7.0 mmol/l) but during the third trimester they became severely chylomicronemic with triglyceride levels ranging from 2314 to 14,596 mg/dl (26 to 164 mmol/l). Three of these four patients had partial lipoprotein lipase (LPL) deficiency. The molecular characterization of the LPL gene in these three patients with partial LPL deficiency revealed four novel unpublished mutations. Patient #1 is a compound heterozygote for Leu252Arg and Ala261Thr mutations which are associated with 25% of normal LPL activity. In addition, she has an apoE3/2 genotype. Patient #2 is a heterozygote for a Asn291Ser substitution with 69% of LPL activity and also has an apoE3/2 genotype, while patient #3 is a heterozygote for a Trp382Stop mutation with 54% of normal LPL activity and has an apoE4/2 genotype. The fourth patient (#4) with pregnancy-induced chylomicronemia does not have LPL deficiency and has an apoE3/3 genotype. The previously reported patient (#5) who had 12% of normal LPL activity due to homozygosity for a Ser172Cys mutation also has an E3/3 genotype. Our data suggest that mutations in the LPL gene that cause partial LPL deficiency might be a frequent factor in the pathogenesis of pregnancy-induced chylomicronemia.
We have described a large number of different mutations in the LPL gene that result in completely catalytically defective LPL protein. More recently exonic polymorphisms in the LPL gene have been described that do not result in the catalytic activity of LPL being significantly impaired. Furthermore we have recently described a patient who is homozygous for a mutation in the LPL gene in a conserved region of exon 5 that results only in partial residual activity and a very mild clinical phenotype. This may suggest that the frequency of mutations in the LPL gene is greater than has been previously recognized. Recognition and selection of patients for analysis was based on the phenotype of chylomicronaemia. However, the existence of the Ser172-Cys mutation in the LPL gene that results in only moderate hypertriglyceridaemia in the absence of environmental factors might suggest that mutations in this gene are more frequent and could be seen in patients with a milder clinical phenotype. The clue to detecting these changes in the LPL gene might be to investigate patients who present with chylomicronaemia due to different environmental triggers while, in the absence of these environmental factors, they have only moderate hypertriglyceridaemia.
The molecular models of two microbial lipases and human pancreatic lipase (PL) have suggested the existence of common structural motifs including a buried active site shielded by an amphipathic surface loop. In an effort to explore the role of residues comprising the loop of lipoprotein lipase (LPL), we have used site-directed mutagenesis to generate three new LPL variants. In variant LPLM1 we deleted 18 amino acids leaving a loop of only 4 residues which resulted in an LPL protein inactive against triolein substrates. In contrast, two other LPL variants with only partial deletions, involving the apical section of the loop [LPLM2 (-8 amino acids) and LPLM3 (-2 amino acids)] manifested normal lipolytic activity. These findings indicate a critical requirement for the maintenance of charge and periodicity in the proximal and distal segments of the LPL loop in normal catalytic function. This is further highlighted by the detection of a mutation in the proximal section of the loop in a patient with LPL deficiency at position 225 which results in a substitution of threonine for isoleucine. The intact catalytic activity of the partial deletion variants (LPLM2 and LPLM3) further suggests that the apical residues of the loop contribute minimally to the functional motifs of the active site. We support this postulate by showing that the conserved glycine in the apical turn section (G229) can be substituted by glutamine, lysine, proline, or threonine without significantly affecting catalytic activity.
Title: Gene-environment interaction in the conversion of a mild-to-severe phenotype in a patient homozygous for a Ser172-->Cys mutation in the lipoprotein lipase gene Ma Y, Liu MS, Ginzinger D, Frohlich J, Brunzell JD, Hayden MR Ref: J Clinical Investigation, 91:1953, 1993 : PubMed
Normal pregnancy is associated with a two- to threefold increase in plasma triglyceride levels, particularly in the third trimester, due both to the overproduction of VLDLs and to the possible suppression of lipoprotein lipase (LPL) activity. Numerous mutations in the human LPL gene causing complete LPL deficiency have been described, but naturally occurring mutations that result in defective LPL with partial activity have not yet been reported. Here we describe a 30-yr-old woman who was first diagnosed with LPL deficiency during pregnancy after she developed pancreatitis. Her plasma triglyceride levels remained mildly elevated at approximately 300 mg/dl (3.4 mmol/liter) after the first pregnancy but rose significantly after she became pregnant again (1800 to 2000 mg/dl) (20.2 to 22.5 mmol/liter). DNA sequence analysis of the LPL gene showed that the patient is homozygous for a Ser172-->Cys missense mutation in exon 5. In vitro mutagenesis revealed that the Ser172-->Cys mutation caused a mutant LPL protein that had residual activity higher than that seen in all eight other missense mutations in patients with LPL deficiency identified in our laboratory. We propose that some mutations in the LPL gene produce a defective LPL with partial activity, which usually leads to mild hypertriglyceridemia.
        
Title: Support for founder effect for two lipoprotein lipase (LPL) gene mutations in French Canadians by analysis of GT microsatellites flanking the LPL gene Wood S, Schertzer M, Hayden M, Ma Y Ref: Hum Genet, 91:312, 1993 : PubMed
Mutations in the human lipoprotein lipase (LPL) gene are one of the major causes of familial chylomicronemia. We have characterized two polymorphic GT microsatellites flanking this gene. Two LPL mutations that are extremely frequent in French Canadians appear to be in complete linkage disequilibrium with specific LPL microsatellite haplotypes indicating a founder effect within this population.
Here we report on the molecular defect that leads to a deficiency of lipoprotein lipase (LPL) activity in a proband of Dutch descent. Southern-blot analysis of the LPL gene from the patient did not reveal any major DNA rearrangements. Sequencing of polymerase-chain-reaction-amplified DNA revealed that the proband is a homozygote for G725C, resulting in a substitution of Pro157 for Arg. This substitution alters a restriction site for PvuII, which allowed rapid identification of the mutant allele in family members. Site-directed mutagenesis and transient expression of the mutant LPL in COS cells produced an enzymatically inactive protein, establishing the functional significance of this mutation. This naturally occurring mutation which alters the Pro157 adjacent to Asp156 of the proposed catalytic triad, indicates that this region of the protein is indeed crucial for LPL catalytic activity.
        
Title: Mapping of the epitope on lipoprotein lipase recognized by a monoclonal antibody (5D2) which inhibits lipase activity Liu MS, Ma Y, Hayden MR, Brunzell JD Ref: Biochimica & Biophysica Acta, 1128:113, 1992 : PubMed
A monoclonal antibody, 5D2, which inhibits human lipoprotein lipase (hLPL) activity has been widely used for assessment of LPL immunoreactive mass in the clinical evaluation of patients [1] and for analysis of structure-function relationships of LPL [2,3]. We have mapped the epitope on LPL, recognized by the 5D2 antibody, within residues 396-405. Ala400 is the critical amino acid residue conferring epitope specificity. This knowledge confirms that the C-terminal domain of LPL plays a critical role in LPL activity and also provides important information for studies exploring the structure-function relationship of LPL using this antibody.
We have previously reported two common lipoprotein lipase (LPL) gene mutations underlying LPL deficiency in the majority of 37 French Canadians (Monsalve et al., 1990. J. Clin. Invest. 86: 728-734; Ma et al., 1991. N. Engl. J. Med. 324: 1761-1766). By examining the 10 coding exons of the LPL gene in another French Canadian patient, we have identified a third missense mutation that is found in two of the three remaining patients for whom mutations are undefined. This is a G to A transition in exon 6 that results in a substitution of asparagine for aspartic acid at residue 250. Using in vitro site-directed mutagenesis, we have confirmed that this mutation causes a catalytically defective LPL protein. In addition, the Asp250----Asn mutation was also found on the same haplotype in an LPL-deficient patient of Dutch ancestry, suggesting a common origin. This mutation alters a TaqI restriction site in exon 6 and will allow for rapid screening in patients with LPL deficiency.
Studies on the molecular biology of lipoprotein lipase (LPL) deficiency have been facilitated by the availability of LPL gene probes and the recent characterization of gene mutations underlying human LPL deficiency. Typically, missense mutations have predominated and show a preferential localization to exons 4 and 5. This distribution supports earlier studies attributing functional significance to residues encoded by these exons. We now report a further missense mutation within exon 5 of the LPL gene in three unrelated patients. Amplification of individual exons by the polymerase chain reaction and direct sequencing revealed a T----C transition at codon 194 of the LPL cDNA which results in a substitution of threonine for isoleucine at this residue. The catalytic abnormality induced by this mutation was confirmed through in vitro mutagenesis studies in COS-1 cells. Transfection with a LPL cDNA containing the codon 194 transition resulted in the synthesis and secretion of a catalytically defective protein. The Thr194 substitution was associated with two different DNA haplotypes, consistent with a multicentric origin for this mutation.
BACKGROUND: Lipoprotein lipase hydrolyzes the triglyceride core of chylomicrons and very-low-density lipoproteins and has a crucial role in regulating plasma lipoprotein levels. Deficiencies of lipoprotein lipase activity lead to aberrations in lipoprotein levels. Worldwide, the frequency of lipoprotein lipase deficiency is highest among French Canadians. We sought to determine the molecular basis of the disorder in this population. METHODS: The entire coding sequence of the lipoprotein lipase gene from one French Canadian patient was amplified by the polymerase chain reaction and sequenced. Exon 5 from 36 other French Canadian patients was amplified and analyzed by dot blot hybridization with allele-specific oligonucleotides. RESULTS: Sequence analysis revealed a missense substitution of leucine (CTG) for proline (CCG) at residue 207 in exon 5. This mutation was found on 54 of the 74 mutant alleles (73 percent) in the patients. Studies of site-directed in vitro mutagenesis have confirmed that this mutation generates inactive lipoprotein lipase and is the cause of lipoprotein lipase deficiency. CONCLUSIONS: We have identified a missense mutation at residue 207 of the lipoprotein lipase gene that is the most common cause of lipoprotein lipase deficiency in French Canadians. This mutation can be easily detected by dot blot analysis, providing opportunity for definitive DNA diagnosis of the disorder and identification of heterozygous carriers.