BACKGROUND: Lipolysis is essential for the supply of nutrients during fasting, the control of body weight, and remodeling of white adipose tissues and thermogenesis. In the obese state, lipolysis activity and the expression of adipose triglyceride lipase (ATGL), a rate-limiting enzyme, is suppressed. However, the mechanism underlying the regulation of ATGL remains largely unknown. We previously reported that a high-fat diet obviously increases protein levels of the prolyl isomerase, Pin1, in epididymal white adipose tissue (epiWAT) of mice and that Pin1 KO mice are resistant to developing obesity. RESULTS: The present study found that deletion of the Pin1 gene in epiWAT upregulated lipolysis and increased ATGL protein expression by ~2-fold. In addition, it was demonstrated that Pin1 directly associated with ATGL and enhanced its degradation through the ubiquitin proteasome system. Indeed, Pin1 overexpression decreased ATGL expression levels, whereas Pin1 knockdown by siRNA treatment upregulated ATGL protein levels without altering mRNA levels. Moreover, under a high fat diet (HFD)-fed condition, adipocyte-specific Pin1 KO (adipoPin1 KO) mice had 2-fold increase lipolytic activity and upregulated beta-oxidation-related gene expressions. These mice also gained less body weight, and had better glucose metabolism according to the results of glucose and insulin tolerance tests. CONCLUSION: Taken together, these results showed that Pin1 directly interacted with and degraded ATGL via a ubiquitin-proteasome system, consequently causing the downregulation of lipolysis. Therefore, Pin1 could be considered a target for the treatment of dyslipidemia and related disorders.
PURPOSE: Although cardiac rehabilitation is recommended for patients early after heart transplantation (HTx), adequate exercise effect cannot always be obtained, partly because in patients with chronic heart failure, exercise capacity is reduced due to malnutrition while waiting for HTx. This study aimed to investigate the relationships between exercise capacity and clinical variables, including nutritional indicators, early after HTx. PATIENTS AND METHODS: Forty-three HTx recipients were studied. The mean age at HTx was 38 +/- 14 years, and 86% were male. We assessed the relationships between peak oxygen uptake (VO2 ) and clinical variables, including plasma B-type natriuretic peptide (BNP), isometric knee extensor muscle strength (KEMS), and nutritional indicators within 1 week of their respective discharges. RESULTS: Peak VO2 correlated positively with isometric KEMS (r = .63, P < .0001) and negatively with BNP level (r = -.37, P = .015). Of the nutritional indicators, only cholinesterase levels had a significant relationship with peak VO2 (r = .34, P = .028), whereas the Geriatric Nutritional Risk Index and the Controlling Nutritional Status scores did not. In multiple linear regression analysis, cholinesterase levels and isometric KEMS were independent predictors of peak VO2 . CONCLUSION: Cholinesterase levels predicted exercise capacity early after HTx.
Genetic mutations contribute to the etiology of autism spectrum disorder (ASD), a common, heterogeneous neurodevelopmental disorder characterized by impairments in social interaction, communication, and repetitive and restricted patterns of behavior. Since neuroligin3 (NLGN3), a cell adhesion molecule at the neuronal synapse, was first identified as a risk gene for ASD, several additional variants in NLGN3 and NLGN4 were found in ASD patients. Moreover, synaptopathies are now known to cause several neuropsychiatric disorders including ASD. In humans, NLGNs consist of five family members, and neuroligin1 (NLGN1) is a major component forming a complex on excitatory glutamatergic synapses. However, the significance of NLGN1 in neuropsychiatric disorders remains unknown. Here, we systematically examine five missense variants of NLGN1 that were detected in ASD patients, and show molecular and cellular alterations caused by these variants. We show that a novel NLGN1 Pro89Leu (P89L) missense variant found in two ASD siblings leads to changes in cellular localization, protein degradation, and to the impairment of spine formation. Furthermore, we generated the knock-in P89L mice, and we show that the P89L heterozygote mice display abnormal social behavior, a core feature of ASD. These results, for the first time, implicate rare variants in NLGN1 as functionally significant and support that the NLGN synaptic pathway is of importance in the etiology of neuropsychiatric disorders.
Here, we present the draft genome sequences of a zeaxanthin-producing flavobacterium, Algibacter lectus strains SS8 and NR4, isolated from coastal sediment and rock surfaces in Hakodate, Japan, respectively. This genomic information represents the first Algibacter genome sequences, which will help us to elucidate the biology and evolution of Flavobacteriaceae bacteria.
Antisense transcription (transcription from the opposite strand to a protein-coding or sense strand) has been ascribed roles in gene regulation involving degradation of the corresponding sense transcripts (RNA interference), as well as gene silencing at the chromatin level. Global transcriptome analysis provides evidence that a large proportion of the genome can produce transcripts from both strands, and that antisense transcripts commonly link neighboring "genes" in complex loci into chains of linked transcriptional units. Expression profiling reveals frequent concordant regulation of sense/antisense pairs. We present experimental evidence that perturbation of an antisense RNA can alter the expression of sense messenger RNAs, suggesting that antisense transcription contributes to control of transcriptional outputs in mammals.