Beside reversible butyrylcholinesterse inhibitors (BChEIs), a plethora of covalent ones, typically pseudo-irreversible carbamates, have been reported in literature. For the latter, however, in most cases the proper confirmation of their covalent mode of action is lacking. Additionally, the available reports on the structure-activity relationships of the O-arylcarbamate warhead are incomplete. Therefore, a follow-up on a series of pseudo-irreversible covalent carbamate human butyrylcholinesterase inhibitors (hBChEIs) and the structure-activity relationships of the N-dialkyl O-arylcarbamate warhead is presented. The covalent mechanism of binding was tested by IC50 time-dependency profiles, and sequentially and increasingly confirmed by kinetic analysis, whole protein LC-MS, and crystallographic evidence. The computational studies provided valuable insights into the steric constraints and identified problematic, bulky carbamate warheads that could not reach and carbamoylate the catalytic Ser198. QM calculations lent further evidence that the steric effects seemed to be a key factor in determining the covalent binding behaviour of these carbamate ChEIs and their duration of action. Furthermore, the introduction of a clickable terminal alkyne moiety into one of the carbamate N-substituents and in situ derivatization with an azide-containing fluorophore enabled fluorescent labelling of plasma hBChE. This proof-of-concept study highlighted the potential of this novel approach and these compounds to be further developed as clickable molecular probes for investigating tissue localization and activity of ChEs
Alongside reversible butyrylcholinesterase inhibitors, a plethora of covalent butyrylcholinesterase inhibitors have been reported in the literature, typically pseudo-irreversible carbamates. For these latter, however, most cases lack full confirmation of their covalent mode of action. Additionally, the available reports regarding the structure-activity relationships of the O-arylcarbamate warhead are incomplete. Therefore, a follow-up on a series of pseudo-irreversible covalent carbamate human butyrylcholinesterase inhibitors and the structure-activity relationships of the N-dialkyl O-arylcarbamate warhead are presented in this study. The covalent mechanism of binding was tested by IC(50) time-dependency profiles, and sequentially and increasingly confirmed by kinetic analysis, whole protein LC-MS, and crystallographic analysis. Computational studies provided valuable insights into steric constraints and identified problematic, bulky carbamate warheads that cannot reach and carbamoylate the catalytic Ser198. Quantum mechanical calculations provided further evidence that steric effects appear to be a key factor in determining the covalent binding behaviour of these carbamate cholinesterase inhibitors and their duration of action. Additionally, the introduction of a clickable terminal alkyne moiety into one of the carbamate N-substituents and in situ derivatisation with azide-containing fluorophore enabled fluorescent labelling of plasma human butyrylcholinesterase. This proof-of-concept study highlights the potential of this novel approach and for these compounds to be further developed as clickable molecular probes for investigating tissue localisation and activity of cholinesterases.
        
Title: Intracellular Hydrolysis of Small-Molecule O-Linked N-Acetylglucosamine Transferase Inhibitors Differs among Cells and Is Not Required for Its Inhibition Loi EM, Weiss M, Pajk S, Gobec M, Tomai T, Pieters RJ, Anderluh M Ref: Molecules, 25:, 2020 : PubMed
O-GlcNAcylation is an essential post-translational modification that occurs on nuclear and cytoplasmic proteins, regulating their function in response to cellular stress and altered nutrient availability. O-GlcNAc transferase (OGT) is the enzyme that catalyzes this reaction and represents a potential therapeutic target, whose biological role is still not fully understood. To support this research field, a series of cell-permeable, low-nanomolar OGT inhibitors were recently reported. In this study, we resynthesized the most potent OGT inhibitor of the library, OSMI-4, and we used it to investigate OGT inhibition in different human cell lines. The compound features an ethyl ester moiety that is supposed to be cleaved by carboxylesterases to generate its active metabolite. Our LC-HRMS analysis of the cell lysates shows that this is not always the case and that, even in the cell lines where hydrolysis does not occur, OGT activity is inhibited.
Brain butyrylcholinesterase (BChE) is an attractive target for drugs designed for the treatment of Alzheimer's disease (AD) in its advanced stages. It also potentially represents a biomarker for progression of this disease. Based on the crystal structure of previously described highly potent, reversible, and selective BChE inhibitors, we have developed the fluorescent probes that are selective towards human BChE. The most promising probes also maintain their inhibition of BChE in the low nanomolar range with high selectivity over acetylcholinesterase. Kinetic studies of probes reveal a reversible mixed inhibition mechanism, with binding of these fluorescent probes to both the free and acylated enzyme. Probes show environment-sensitive emission, and additionally, one of them also shows significant enhancement of fluorescence intensity upon binding to the active site of BChE. Finally, the crystal structures of probes in complex with human BChE are reported, which offer an excellent base for further development of this library of compounds.