Hepatic lipase is a key enzyme that is involved in HDL-C metabolism. The goal of this study was to find out the frequency of the hepatic lipase C514T polymorphism, and evaluate its relationship with plasma HDL-C levels and coronary artery disease (CAD) in Koreans. Two hundred and twenty four subjects with no previous history of lipid-lowering therapy, 118 patients with significant CAD, and 106 controls were examined with respect to their genotypes, lipid profiles, and other risk factors for CAD. The frequency of the -514T allele was 0.37 in men and 0.35 in women, which were higher than the frequency that was reported in Caucasians, but lower than the frequency that was reported in African-Americans. The -514T allele was associated with significantly higher HDL-C levels in women. After controlling for age, gender, BMI, DM, and smoking, the non-CC genotype was significantly associated with HDL-C levels, and explained 6% of the HDL-C variation in this study. When the genotypes-distribution was compared between the CAD and non-CAD patients, the hepatic lipase C-514T polymorphism was not associated with the presence of CAD. Koreans have a higher frequency of the hepatic lipase gene 514T allele than Caucasians, and the -514T allele is associated with higher plasma HDL-C levels in Korean women, and perhaps non-smoking men. However, our data does not suggest an association between the polymorphism and an increased risk of CAD.
        
Title: Studies on the structure of lecithin:cholesterol acyltransferase (LCAT)--comparisons of the active site region and secondary structure of the human and the porcine enzymes Yueksel KU, Park YB, Jung J, Gracy RW, Lacko AG Ref: Comparative Biochemistry & Physiology, 94:389, 1989 : PubMed
1. Chemical modification of essential serine, histidine and cysteine residues of porcine LCAT were accompanied by loss of enzymatic activity. 2. Modification of cysteine with DTNB inactivated the enzyme which could not be reactivated by KCN suggesting direct involvement of the cysteine residue(s) in catalysis. 3. About half of the primary structure of the porcine enzyme was determined. 4. Respective regions of the human and porcine LCAT are highly homologous; especially, the amino-terminus and the region surrounding the DFP-labeled serine residues. 5. The observed primary structure differences represent amino acid substitutions that are projected to induce significant changes in secondary structure.