Title: Investigation of Cannabis sativa Phytochemicals as Anti-Alzheimer's Agents: An In Silico Study Patil N, Chandel V, Rana A, Jain M, Kaushik P Ref: Plants (Basel), 12:, 2023 : PubMed
Cannabis sativa is a medicinal plant that has been known for years and is used as an Ayurvedic medicine. This plant has great potential in treating various types of brain diseases. Phytochemicals present in this plant act as antioxidants by maintaining synaptic plasticity and preventing neuronal loss. Cannabidiol (CBD) and Tetrahydrocannabinol (THC) are both beneficial in treating Alzheimer's disease by increasing the solubility of Abeta42 amyloid and Tau aggregation. Apart from these therapeutic effects, there are certain unknown functions of these phytochemicals in Alzheimer's disease that we want to elucidate through this study. In this research, our approach is to analyze the effect of phytochemicals in Cannabis sativa on multiple culprit enzymes in Alzheimer's disease, such as AChE (Acetylcholinesterase), BChE (Butyrylcholinesterase), gamma-secretase, and BACE-1. In this study, the compounds were selected by Lipinski's rule, ADMET, and ProTox based on toxicity. Molecular docking between the selected compounds (THCV, Cannabinol C2, and Cannabidiorcol) and enzymes mentioned above was obtained by various software programs including AutoDock Vina 4.2, AutoDock, and iGEMDOCK. In comparison to Donepezil (BA = -8.4 kcal/mol, Ki = 1.46 mM), Rivastigmine (BA = -7.0 kcal/mol, Ki = 0.02 mM), and Galantamine (BA = -7.1, Ki = 2.1 mM), Cannabidiorcol (BA = -9.4 kcal/mol, Ki = 4.61 mM) shows significant inhibition of AChE. On the other hand, Cannabinol C2 (BA = -9.2 kcal/mol, Ki = 4.32 mM) significantly inhibits Butyrylcholinesterase (BuChE) in comparison to Memantine (BA = -6.8 kcal/mol, Ki = 0.54 mM). This study sheds new light and opens new avenues for elucidating the role of bioactive compounds present in Cannabis sativa in treating Alzheimer's disease.
To study effect of yoga on the physiological, psychological well being, psychomotor parameter and modifying cardiovascular risk factors in mild to moderate hypertensive patients.
METHODS:
Twenty patients (16 males, 4 females) in the age group of 35 to 55 years with mild to moderate essential hypertension underwent yogic practices daily for one hour for three months. Biochemical, physiological and psychological parameters were studied prior and following period of three months of yoga practices, biochemical parameters included, blood glucose, lipid profile, catecholmines, MDA, Vit. C cholinesterase and urinary VMA. Psychological evaluation was done by using personal orientation inventory and subjective well being.
RESULTS:
Results showed decrease in blood pressure and drug score modifying risk factors, i.e. blood glucose, cholesterol and triglycerides decreased overall improvement in subjective well being and quality of life. There was decrease in VMA catecholamine, and decrease MDA level suggestive decrease sympathetic activity and oxidant stress.
CONCLUSION:
Yoga can play an important role in risk modification for cardiovascular diseases in mild to moderate hypertension.
A major goal in human genetics is to understand the role of common genetic variants in susceptibility to common diseases. This will require characterizing the nature of gene variation in human populations, assembling an extensive catalogue of single-nucleotide polymorphisms (SNPs) in candidate genes and performing association studies for particular diseases. At present, our knowledge of human gene variation remains rudimentary. Here we describe a systematic survey of SNPs in the coding regions of human genes. We identified SNPs in 106 genes relevant to cardiovascular disease, endocrinology and neuropsychiatry by screening an average of 114 independent alleles using 2 independent screening methods. To ensure high accuracy, all reported SNPs were confirmed by DNA sequencing. We identified 560 SNPs, including 392 coding-region SNPs (cSNPs) divided roughly equally between those causing synonymous and non-synonymous changes. We observed different rates of polymorphism among classes of sites within genes (non-coding, degenerate and non-degenerate) as well as between genes. The cSNPs most likely to influence disease, those that alter the amino acid sequence of the encoded protein, are found at a lower rate and with lower allele frequencies than silent substitutions. This likely reflects selection acting against deleterious alleles during human evolution. The lower allele frequency of missense cSNPs has implications for the compilation of a comprehensive catalogue, as well as for the subsequent application to disease association.