Anticancer drug, irinotecan shows serious dose-limiting gastrointestinal toxicity regardless of intravenous dosing. Although enzymes and transporters involved in irinotecan disposition are known, quantitative contributions of these mechanisms in complex in vivo disposition of irinotecan are poorly understood. We explained intestinal disposition and toxicity of irinotecan by integrating i) in vitro metabolism and transport data of rinotecan and its metabolites, ii) ex vivo gut microbial activation of the toxic metabolite, SN-38, and iii) the tissue protein abundance data of enzymes and transporters relevant to irinotecan and its metabolites. Integration of in vitro kinetics data with the tissue enzyme and transporter abundance predicted that carboxylesterase (CES) mediated hydrolysis of irinotecan is the rate-limiting process in the liver, where the toxic metabolite formed is rapidly deactivated by glucuronidation. In contrast, the poor SN-38 glucuronidation rate as compared to its efficient formation by CES2 in the enterocytes is the key mechanism of the intestinal accumulation of the toxic metabolite. The biliary efflux and OATP2B1 mediated enterocyte uptake can also synergize buildup of SN-38 in the enterocytes, whereas intestinal P-glycoprotein (P-gp) likely facilitates SN38 detoxification in the enterocytes. The higher SN-38 concentration in the intestine can be further nourished by beta-d-glucuronidases. Understanding the quantitative significance of the key metabolism and transport processes of irinotecan and its metabolites can be leveraged to alleviate its intestinal side effects. Further, the proteomics-informed quantitative approach to determine intracellular disposition can be extended to determine susceptibility of cancer cells over normal cells for precision irinotecan therapy. Significance Statement This work provides a deeper insight into the quantitative relevance of irinotecan hydrolysis (activation), conjugation (deactivation), and deconjugation (reactivation) by human or gut microbial enzymes or transporters. The results of this study explain the characteristic intestinal exposure and toxicity of irinotecan. Quantitative tissue-specific in vitro to in vivo extrapolation approach presented in this study can be extended to cancer cells.
Bacterial beta-glucuronidases expressed by the symbiotic intestinal microbiota appear to play important roles in drug-induced epithelial cell toxicity in the gastrointestinal (GI) tract. For the anticancer drug CPT-11 (irinotecan) and the nonsteroidal anti-inflammatory drug diclofenac, it has been shown that removal of the glucuronide moieties from drug metabolites by bacterial beta-glucuronidases in the GI lumen can significantly damage the intestinal epithelium. Furthermore, selective disruption of bacterial beta-glucuronidases by small molecule inhibitors alleviates these side effects, which, for CPT-11 {7-ethyl-10-[4-(1-piperidino)-1-piperidino]}, can be dose limiting. Here we characterize novel microbial beta-glucuronidase inhibitors that inhibit Escherichia coli beta-glucuronidase in vitro with Ki values between 180 nM and 2 muM, and disrupt the enzyme in E. coli cells, with EC50 values as low as 300 nM. All compounds are selective for E. coli beta-glucuronidase without inhibiting purified mammalian beta-glucuronidase, and they do not impact the survival of either bacterial or mammalian cells. The 2.8 A resolution crystal structure of one inhibitor bound to E. coli beta-glucuronidase demonstrates that it contacts and orders only a portion of the "bacterial loop" present in microbial, but not mammalian, beta-glucuronidases. The most potent compound examined in this group was found to protect mice against CPT-11-induced diarrhea. Taken together, these data advance our understanding of the chemical and structural basis of selective microbial beta-glucuronidase inhibition, which may improve human drug efficacy and toxicity.
The encapsulation of proteins in biomimetic silica has recently been shown to successfully maintain enzymes in their active state. Organophosphate (OP) compounds are used as pesticides as well as potent chemical warfare nerve agents. Because these toxicants are life threatening, we sought to generate biomimetic silicas capable of responding to OPs. Here, we present the silica encapsulation of human drug metabolism enzyme carboxylesterase 1 (hCE1) in the presence of a range of catalysts. hCE1 was successfully encapsulated into silica particles when lysozyme or the peptide R5 were used as catalysts; in contrast, polyethyleneimine, a catalyst used to encapuslate other enzymes, did not facilitate hCE1 entrapment. hCE1 silica particles in a column chromatography format respond to the presence of the OP pesticides paraoxon and dimethyl-p-nitrophenyl phosphate in solution. These results may lead to novel approaches to detect OP pesticides or other weaponized agents that bind hCE1.
Organophosphorus (OP) nerve agents are potent suicide inhibitors of the essential neurotransmitter-regulating enzyme acetylcholinesterase. Due to their acute toxicity, there is significant interest in developing effective countermeasures to OP poisoning. Here we impart nerve agent hydrolysis activity into the human drug metabolism enzyme carboxylesterase 1. Using crystal structures of the target enzyme in complex with nerve agent as a guide, a pair of histidine and glutamic acid residues were designed proximal to the enzyme's native catalytic triad. The resultant variant protein demonstrated significantly increased rates of reactivation following exposure to sarin, soman, and cyclosarin. Importantly, the addition of these residues did not alter the high affinity binding of nerve agents to this protein. Thus, using two amino acid substitutions, a novel enzyme was created that efficiently converted a group of hemisubstrates, compounds that can start but not complete a reaction cycle, into bona fide substrates. Such approaches may lead to novel countermeasures for nerve agent poisoning.
        
Title: A structural examination of agrochemical processing by human carboxylesterase 1 Hemmert AC, Redinbo MR Ref: Journal of Pesticide Science, 35:250, 2010 : PubMed
Human carboxylesterase 1 (hCE1) is the primary carboxylesterase expressed in the liver. This critical member of the phase I drug metabolism pathway detoxifies a wide-range of endobiotics, xenobiotics, and agrochemicals. To date, more than a dozen X-ray crystal structures have been elucidated of hCE1 in complex with a broad spectrum of ligands, including organophosphates. These structures provide valuable insights into agrochemical binding and metabolism by hCE1. For example, variable binding pockets that frame the enzyme's catalytic triad and a long, flexible loop capping this region appear to regulate substrate affinity. Stereoisomers of organophosphates illustrate the substrate selectivity of these two pockets. In contrast, pyrethroid isomers likely impact the positioning of the oxyanion hole required to stabilize the negatively charged transition-state oxygen. Finally, it appears that rates of spontaneous hCE1 reactivation in the presence of organophosphates are significantly affected by alkoxy placement within the active site.
Organophosphorus (OP) nerve agents are potent toxins that inhibit cholinesterases and produce a rapid and lethal cholinergic crisis. Development of protein-based therapeutics is being pursued with the goal of preventing nerve agent toxicity and protecting against the long-term side effects of these agents. The drug-metabolizing enzyme human carboxylesterase 1 (hCE1) is a candidate protein-based therapeutic because of its similarity in structure and function to the cholinesterase targets of nerve agent poisoning. However, the ability of wild-type hCE1 to process the G-type nerve agents sarin and cyclosarin has not been determined. We report the crystal structure of hCE1 in complex with the nerve agent cyclosarin. We further use stereoselective nerve agent analogs to establish that hCE1 exhibits a 1700- and 2900-fold preference for the P(R) enantiomers of analogs of soman and cyclosarin, respectively, and a 5-fold preference for the P(S) isomer of a sarin analog. Finally, we show that for enzyme inhibited by racemic mixtures of bona fide nerve agents, hCE1 spontaneously reactivates in the presence of sarin but not soman or cyclosarin. The addition of the neutral oxime 2,3-butanedione monoxime increases the rate of reactivation of hCE1 from sarin inhibition by more than 60-fold but has no effect on reactivation with the other agents examined. Taken together, these data demonstrate that hCE1 is only reactivated after inhibition with the more toxic P(S) isomer of sarin. These results provide important insights toward the long-term goal of designing novel forms of hCE1 to act as protein-based therapeutics for nerve agent detoxification.
Mammalian carboxylesterase (CES or Ces) genes encode enzymes that participate in xenobiotic, drug, and lipid metabolism in the body and are members of at least five gene families. Tandem duplications have added more genes for some families, particularly for mouse and rat genomes, which has caused confusion in naming rodent Ces genes. This article describes a new nomenclature system for human, mouse, and rat carboxylesterase genes that identifies homolog gene families and allocates a unique name for each gene. The guidelines of human, mouse, and rat gene nomenclature committees were followed and "CES" (human) and "Ces" (mouse and rat) root symbols were used followed by the family number (e.g., human CES1). Where multiple genes were identified for a family or where a clash occurred with an existing gene name, a letter was added (e.g., human CES4A; mouse and rat Ces1a) that reflected gene relatedness among rodent species (e.g., mouse and rat Ces1a). Pseudogenes were named by adding "P" and a number to the human gene name (e.g., human CES1P1) or by using a new letter followed by ps for mouse and rat Ces pseudogenes (e.g., Ces2d-ps). Gene transcript isoforms were named by adding the GenBank accession ID to the gene symbol (e.g., human CES1_AB119995 or mouse Ces1e_BC019208). This nomenclature improves our understanding of human, mouse, and rat CES/Ces gene families and facilitates research into the structure, function, and evolution of these gene families. It also serves as a model for naming CES genes from other mammalian species.
CPT-11 is a potent antitumor agent that is activated by carboxylesterases (CE) and intracellular expression of CEs that can activate the drug results in increased cytotoxicity to the drug. As activation of CPT-11 (irinotecan-7-ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxycamptothecin) by human CEs is relatively inefficient, we have developed enzyme/prodrug therapy approaches based on the CE/CPT-11 combination using a rabbit liver CE (rCE). However, the in vivo application of this technology may be hampered by the development of an immune response to rCE. Therefore, we have developed a mutant human CE (hCE1m6), based on the human liver CE hCE1, that can activate CPT-11 approximately 70-fold more efficiently than the wild-type protein and can be expressed at high levels in mammalian cells. Indeed, adenoviral-mediated delivery of hCE1m6 with human tumor cells resulted in up to a 670-fold reduction in the IC(50) value for CPT-11, as compared to cells transduced with vector control virus. Furthermore, xenograft studies with human tumors expressing hCE1m6 confirm the ability of this enzyme to activate CPT-11 in vivo and induce antitumor activity. We propose that this enzyme should likely be less immunogenic than rCE and would be suitable for the in vivo application of CE/CPT-11 enzyme/prodrug therapy.
The organophosphorus nerve agents sarin, soman, tabun, and VX exert their toxic effects by inhibiting the action of human acetylcholinesterase, a member of the serine hydrolase superfamily of enzymes. The current treatments for nerve agent exposure must be administered quickly to be effective, and they often do not eliminate long-term toxic side effects associated with organophosphate poisoning. Thus, there is significant need for effective prophylactic methods to protect at-risk personnel from nerve agent exposure, and protein-based approaches have emerged as promising candidates. We present the 2.7 A resolution crystal structures of the serine hydrolase human carboxylesterase 1 (hCE1), a broad-spectrum drug metabolism enzyme, in covalent acyl-enzyme intermediate complexes with the chemical weapons soman and tabun. The structures reveal that hCE1 binds stereoselectively to these nerve agents; for example, hCE1 appears to react preferentially with the 10(4)-fold more lethal PS stereoisomer of soman relative to the PR form. In addition, structural features of the hCE1 active site indicate that the enzyme may be resistant to dead-end organophosphate aging reactions that permanently inactivate other serine hydrolases. Taken together, these data provide important structural details toward the goal of engineering hCE1 into an organophosphate hydrolase and protein-based therapeutic for nerve agent exposure.
Carboxylesterases (CE) are ubiquitous enzymes that hydrolyze numerous ester-containing xenobiotics, including complex molecules, such as the anticancer drugs irinotecan (CPT-11) and capecitabine and the pyrethroid insecticides. Because of the role of CEs in the metabolism of many exogenous and endogenous ester-containing compounds, a number of studies have examined the inhibition of this class of enzymes. Trifluoromethylketone-containing (TFK) compounds have been identified as potent CE inhibitors. In this article, we present inhibition constants for 21 compounds, including a series of sulfanyl, sulfinyl, and sulfonyl TFKs with three mammalian CEs, as well as human acetyl- and butyrylcholinesterase. To examine the nature of the slow tight-binding inhibitor/enzyme interaction, assays were performed using either a 5-min or a 24-h preincubation period. Results showed that the length of the preincubation interval significantly affects the inhibition constants on a structurally dependent basis. The TFK-containing compounds were generally potent inhibitors of mammalian CEs, with Ki values as low as 0.3 nM observed. In most cases, thioether-containing compounds were more potent inhibitors then their sulfinyl or sulfonyl analogs. QSAR analyses demonstrated excellent observed versus predicted values correlations (r2 ranging from 0.908-0.948), with cross-correlation coefficients (q2) of approximately 0.9. In addition, pseudoreceptor models for the TKF analogs were very similar to structures and models previously obtained using benzil- or sulfonamide-based CE inhibitors. These studies indicate that more potent, selective CE inhibitors, containing long alkyl or aromatic groups attached to the thioether chemotype in TFKs, can be developed for use in in vivo enzyme inhibition.
Human carboxylesterase 1 (hCE1) is a drug and endobiotic-processing serine hydrolase that exhibits relatively broad substrate specificity. It has been implicated in a variety of endogenous cholesterol metabolism pathways including the following apparently disparate reactions: cholesterol ester hydrolysis (CEH), fatty acyl Coenzyme A hydrolysis (FACoAH), acyl-Coenzyme A:cholesterol acyltransfer (ACAT), and fatty acyl ethyl ester synthesis (FAEES). The structural basis for the ability of hCE1 to perform these catalytic actions involving large substrates and products has remained unclear. Here we present four crystal structures of the hCE1 glycoprotein in complexes with the following endogenous substrates or substrate analogues: Coenzyme A, the fatty acid palmitate, and the bile acids cholate and taurocholate. While the active site of hCE1 was known to be promiscuous and capable of interacting with a variety of chemically distinct ligands, these structures reveal that the enzyme contains two additional ligand-binding sites and that each site also exhibits relatively non-specific ligand-binding properties. Using this multisite promiscuity, hCE1 appears structurally capable of assembling several catalytic events depending, apparently, on the physiological state of the cellular environment. These results expand our understanding of enzyme promiscuity and indicate that, in the case of hCE1, multiple non-specific sites are employed to perform distinct catalytic actions.
Human carboxylesterase 1 (hCE1) exhibits broad substrate specificity and is involved in xenobiotic processing and endobiotic metabolism. We present and analyze crystal structures of hCE1 in complexes with the cholesterol-lowering drug mevastatin, the breast cancer drug tamoxifen, the fatty acyl ethyl ester (FAEE) analogue ethyl acetate, and the novel hCE1 inhibitor benzil. We find that mevastatin does not appear to be a substrate for hCE1, and instead acts as a partially non-competitive inhibitor of the enzyme. Similarly, we show that tamoxifen is a low micromolar, partially non-competitive inhibitor of hCE1. Further, we describe the structural basis for the inhibition of hCE1 by the nanomolar-affinity dione benzil, which acts by forming both covalent and non-covalent complexes with the enzyme. Our results provide detailed insights into the catalytic and non-catalytic processing of small molecules by hCE1, and suggest that the efficacy of clinical drugs may be modulated by targeted hCE1 inhibitors.
        
Title: Stereoselective hydrolysis of pyrethroid-like fluorescent substrates by human and other mammalian liver carboxylesterases Huang H, Fleming CD, Nishi K, Redinbo MR, Hammock BD Ref: Chemical Research in Toxicology, 18:1371, 2005 : PubMed
Mammalian hepatic carboxylesterases (CEs) play important roles in the detoxification of ester-containing pyrethroids, which are widely used for the control of agricultural pests and disease vectors such as mosquitoes. Pyrethroids and pyrethroid-like fluorescent substrates exhibit a consistent pattern of stereoselective hydrolysis by a recombinant murine hepatic CE. We sought to understand whether this pattern is maintained in other hepatic CEs and to unravel the origin of the stereoselectivity. We found that all hepatic CEs tested displayed a consistent pattern of stereoselective hydrolysis: the chiral center(s) in the acid moiety more strongly influenced stereoselective hydrolysis than the chiral center in the alcohol moiety. For cypermethrin analogues with a cyclopropane ring in the acid moiety, trans-isomers were generally hydrolyzed faster than the corresponding cis-isomers. For fenvalerate analogues without a cyclopropane ring in the acid moiety, 2R-isomers were better substrates than 2S-isomers. These general hydrolytic patterns were examined by modeling the pyrethroid-like analogues within the active site of the crystal structure of human carboxylesterase 1 (hCE1). Stereoselective steric clashes were found to occur between the acid moieties and either the catalytic Ser loop (residues 219-225) or the oxyanion hole (residues140-144). These clashes appeared to explain the stereopreference between trans- and cis-isomers of cypermethrin analogues, and the 2R- and 2S-isomers of fenvalerate analogues by hCE1. The implications these findings have on the design and use of effective pesticides are discussed.
        
Title: Mammalian carboxylesterases: from drug targets to protein therapeutics Redinbo MR, Potter PM Ref: Drug Discov Today, 10:313, 2005 : PubMed
Our understanding of the detailed recognition and processing of clinically useful therapeutic agents has grown rapidly in recent years, and we are now able to begin to apply this knowledge to the rational treatment of disease. Mammalian carboxylesterases (CEs) are enzymes with broad substrate specificities that have key roles in the metabolism of a wide variety of clinical drugs, illicit narcotics and chemical nerve agents. Here, the functions, mechanism of action and structures of human CEs are reviewed, with the goal of understanding how these proteins are able to act in such a non-specific fashion, yet catalyze a remarkably specific chemical reaction. Current approaches to harness these enzymes as protein-based therapeutics for drug and chemical toxin clearance are described, as well as their uses for targeted chemotherapeutic prodrug activation. Also included is an outline of how selective CE inhibitors could be used as co-drugs to improve the efficacy of clinically approved agents.
CPT-11 is a prodrug that is converted in vivo to the topoisomerase I poison SN-38 by carboxylesterases (CEs). Among the CEs studied thus far, a rabbit liver CE (rCE) converts CPT-11 to SN-38 most efficiently. Despite extensive sequence homology, however, the human homologues of this protein, hCE1 and hiCE, metabolize CPT-11 with significantly lower efficiencies. To understand these differences in drug metabolism, we wanted to generate mutations at individual amino acid residues to assess the effects of these mutations on CPT-11 conversion. We identified a Bacillus subtilis protein (pnb CE) that could be used as a model for the mammalian CEs. We demonstrated that pnb CE, when expressed in Escherichia coli, metabolizes both the small esterase substrate o-NPA and the bulky prodrug CPT-11. Furthermore, we found that the pnb CE and rCE crystal structures show an only 2.4 A rmsd variation over 400 residues of the alpha-carbon trace. Using the pnb CE model, we demonstrated that the "side-door" residues, S218 and L362, and the corresponding residues in rCE, L252 and L424, were important in CPT-11 metabolism. Furthermore, we found that at position 218 or 252 the size of the residue, and at position 362 or 424 the hydrophobicity and charge of the residue, were the predominant factors in influencing drug activation. The most significant change in CPT-11 metabolism was observed with the L424R variant rCE that converted 10-fold less CPT-11 than the wild-type protein. As a result, COS-7 cells expressing this mutant were 3-fold less sensitive to CPT-11 than COS-7 cells expressing the wild-type protein.
We present the first crystal structures of a human protein bound to analogs of cocaine and heroin. Human carboxylesterase 1 (hCE1) is a broad-spectrum bioscavenger that catalyzes the hydrolysis of heroin and cocaine, and the detoxification of organophosphate chemical weapons, such as sarin, soman and tabun. Crystal structures of the hCE1 glycoprotein in complex with the cocaine analog homatropine and the heroin analog naloxone provide explicit details about narcotic metabolism in humans. The hCE1 active site contains both specific and promiscuous compartments, which enable the enzyme to act on structurally distinct chemicals. A selective surface ligand-binding site regulates the trimer-hexamer equilibrium of hCE1 and allows each hCE1 monomer to bind two narcotic molecules simultaneously. The bioscavenger properties of hCE1 can likely be used to treat both narcotic overdose and chemical weapon exposure.
Human carboxylesterase 1 (hCE1) is a broad-spectrum bioscavenger that plays important roles in narcotic metabolism, clinical prodrug activation, and the processing of fatty acid and cholesterol derivatives. We determined the 2.4 A crystal structure of hCE1 in complex with tacrine, the first drug approved for treating Alzheimer's disease, and compare this structure to the Torpedo californica acetylcholinesterase (AcChE)-tacrine complex. Tacrine binds in multiple orientations within the catalytic gorge of hCE1, while it stacks in the smaller AcChE active site between aromatic side chains. Our results show that hCE1's promiscuous action on distinct substrates is enhanced by its ability to interact with ligands in multiple orientations at once. Further, we use our structure to identify tacrine derivatives that act as low-micromolar inhibitors of hCE1 and may provide new avenues for treating narcotic abuse and cholesterol-related diseases.
        
Title: Human carboxylesterase 1: from drug metabolism to drug discovery Redinbo MR, Bencharit S, Potter PM Ref: Biochemical Society Transactions, 31:620, 2003 : PubMed
Human carboxylesterase 1 (hCE1) is a serine esterase involved in both drug metabolism and activation, as well as other biological processes. hCE1 catalyses the hydrolysis of heroin and cocaine, and the transesterification of cocaine in the presence of ethanol to the toxic metabolite cocaethylene. We have determined the crystal structures of hCE1 in complex with either the cocaine analogue homatropine or the heroin analogue naloxone. These are the first structures of a human carboxylesterase, and they provide details about narcotic metabolism in humans. hCE1's active site contains rigid and flexible pockets, explaining the enzyme's ability to act both specifically and promiscuously. hCE1 has also been reported to contain cholesteryl ester hydrolase, fatty acyl-CoA hydrolase and acyl-CoA:cholesterol acyltransferase activities, and thus appears to be involved in cholesterol metabolism. Since the enzyme may be useful as a treatment for cocaine overdose, and may afford protection against chemical weapons like Sarin, Soman and VX gas, hCE1 could serve as both a drug and a drug target. Selective hCE1 inhibitors targeted to several sites on the enzyme may also pave the way for novel clinical tools to manage cholesterol homoeostasis in humans.
Mammalian carboxylesterases cleave the anticancer prodrug CPT-11 (Irinotecan) into SN-38, a potent topoisomerase I poison, and 4-piperidino-piperidine (4PP). We present the 2.5 A crystal structure of rabbit liver carboxylesterase (rCE), the most efficient enzyme known to activate CPT-11 in this manner, in complex with the leaving group 4PP. 4PP is observed bound adjacent to a high-mannose Asn-linked glycosylation site on the surface of rCE. This product-binding site is separated from the catalytic gorge by a thin wall of amino acid side chains, suggesting that 4PP may be released through this secondary product exit pore. The crystallographic observation of a leaving group bound on the surface of rCE supports the 'back door' product exit site proposed for the acetylcholinesterases. These results may facilitate the design of improved anticancer drugs or enzymes for use in viral-directed cancer cotherapies.