Multiple Ras proteins, including N-Ras, depend on a palmitoylation/depalmitoylation cycle to regulate their subcellular trafficking and oncogenicity. General lipase inhibitors such as Palmostatin M (Palm M) block N-Ras depalmitoylation, but lack specificity and target several enzymes displaying depalmitoylase activity. Here, we describe ABD957, a potent and selective covalent inhibitor of the ABHD17 family of depalmitoylases, and show that this compound impairs N-Ras depalmitoylation in human acute myeloid leukemia (AML) cells. ABD957 produced partial effects on N-Ras palmitoylation compared with Palm M, but was much more selective across the proteome, reflecting a plasma membrane-delineated action on dynamically palmitoylated proteins. Finally, ABD957 impaired N-Ras signaling and the growth of NRAS-mutant AML cells in a manner that synergizes with MAP kinase kinase (MEK) inhibition. Our findings uncover a surprisingly restricted role for ABHD17 enzymes as regulators of the N-Ras palmitoylation cycle and suggest that ABHD17 inhibitors may have value as targeted therapies for NRAS-mutant cancers.
S-Palmitoylation is a reversible post-translational lipid modification that regulates protein trafficking and signaling. The enzymatic depalmitoylation of proteins is inhibited by the beta-lactones Palmostatin M and B, which have been found to target several serine hydrolases. In efforts to better understand the mechanism of action of Palmostatin M, we describe herein the synthesis, chemical proteomic analysis, and functional characterization of analogs of this compound. We identify Palmostatin M analogs that maintain inhibitory activity in N-Ras depalmitoylation assays while displaying complementary reactivity across the serine hydrolase class as measured by activity-based protein profiling. Active Palmostatin M analogs inhibit the recently characterized ABHD17 subfamily of depalmitoylating enzymes, while sparing other candidate depalmitoylases such as LYPLA1 and LYPLA2. These findings improve our understanding of the structure-activity relationship of Palmostatin M and refine the set of serine hydrolase targets relevant to the compound's effects on N-Ras palmitoylation dynamics.