Determining the effect of gene deletion is a fundamental approach to understanding gene function. Conventional genetic screens exhibit biases, and genes contributing to a phenotype are often missed. We systematically constructed a nearly complete collection of gene-deletion mutants (96% of annotated open reading frames, or ORFs) of the yeast Saccharomyces cerevisiae. DNA sequences dubbed 'molecular bar codes' uniquely identify each strain, enabling their growth to be analysed in parallel and the fitness contribution of each gene to be quantitatively assessed by hybridization to high-density oligonucleotide arrays. We show that previously known and new genes are necessary for optimal growth under six well-studied conditions: high salt, sorbitol, galactose, pH 8, minimal medium and nystatin treatment. Less than 7% of genes that exhibit a significant increase in messenger RNA expression are also required for optimal growth in four of the tested conditions. Our results validate the yeast gene-deletion collection as a valuable resource for functional genomics.
The nucleotide sequence of the 948,061 base pairs of chromosome XVI has been determined, completing the sequence of the yeast genome. Chromosome XVI was the last yeast chromosome identified, and some of the genes mapped early to it, such as GAL4, PEP4 and RAD1 (ref. 2) have played important roles in the development of yeast biology. The architecture of this final chromosome seems to be typical of the large yeast chromosomes, and shows large duplications with other yeast chromosomes. Chromosome XVI contains 487 potential protein-encoding genes, 17 tRNA genes and two small nuclear RNA genes; 27% of the genes have significant similarities to human gene products, and 48% are new and of unknown biological function. Systematic efforts to explore gene function have begun.
The complete DNA sequence of the yeast Saccharomyces cerevisiae chromosome IV has been determined. Apart from chromosome XII, which contains the 1-2 Mb rDNA cluster, chromosome IV is the longest S. cerevisiae chromosome. It was split into three parts, which were sequenced by a consortium from the European Community, the Sanger Centre, and groups from St Louis and Stanford in the United States. The sequence of 1,531,974 base pairs contains 796 predicted or known genes, 318 (39.9%) of which have been previously identified. Of the 478 new genes, 225 (28.3%) are homologous to previously identified genes and 253 (32%) have unknown functions or correspond to spurious open reading frames (ORFs). On average there is one gene approximately every two kilobases. Superimposed on alternating regional variations in G+C composition, there is a large central domain with a lower G+C content that contains all the yeast transposon (Ty) elements and most of the tRNA genes. Chromosome IV shares with chromosomes II, V, XII, XIII and XV some long clustered duplications which partly explain its origin.
The yeast Saccharomyces cerevisiae is the pre-eminent organism for the study of basic functions of eukaryotic cells. All of the genes of this simple eukaryotic cell have recently been revealed by an international collaborative effort to determine the complete DNA sequence of its nuclear genome. Here we describe some of the features of chromosome XII.
        
Title: The sequence of a nearly unclonable 22.8 kb segment on the left arm chromosome VII from Saccharomyces cerevisiae reveals ARO2, RPL9A, TIP1, MRF1 genes and six new open reading frames Voet M, Defoor E, Verhasselt P, Riles L, Robben J, Volckaert G Ref: Yeast, 13:177, 1997 : PubMed
The nucleotide sequence of 22,803 bp on the left arm of chromosome VII was determined by polymerase chain reaction-based approaches to compensate for the unstable character of cosmid clones from this region of the chromosome. The coding density of the sequence is particularly high (more than 83%). Twelve open reading frames (ORFs) longer than 300 bp were found, two of which (at the left side) have been described previously (James et al., 1995) after sequencing of an overlapping cosmid. Four other ORFs correspond to published sequences of the known genes ARO2, RPL9A, TIP1 and MRF1. ARO2 codes for chorismate synthetase. RPL9A for protein L9 of the large ribosomal subunit and MRF1 for a mitochondrial translation release factor. The TIP1 product interacts with Sec20p and is thus involved in transport from endoplasmic reticulum to Golgi. Five of the remaining ORFs have not been identified previously, while the sixth (YGL142c) has been partially sequenced as it lies 5' upstream of MRF1. These six ORFs are relatively large (between 933 and 3657 nucleotides). YGL146c, YGL142c, YGL140c and YGL139w have no significant homology to any protein sequence presently available in the public databases, but show two, nine, nine and eight putative transmembrane spans, respectively. YGL144c has a serine active site signature of lipases. YGL141w has limited homology to several human proteins, one of which mediates complex formation between papillomavirus E6 oncoprotein and tumor suppressor protein p53.