Aims: Since 2006, DPP-4 inhibitors have become established therapy for the treatment of type 2 diabetes. Despite sharing a common mechanism of action, considerable chemical diversity exists amongst members of the DPP-4 inhibitor class, raising the question as to whether structural differences may result in differentiated enzyme inhibition and antihyperglycaemic activity. Methods: We have compared the binding properties of the most commonly used inhibitors and have investigated the relationship between their inhibitory potency at the level of the enzyme and their acute glucose-lowering efficacy. Results: Firstly, using a combination of published crystal structures and in-house data, we demonstrated that the binding site utilized by all of the DPP-4 inhibitors assessed was the same as that used by neuropeptide Y, supporting the hypothesis that DPP-4 inhibitors are able to competitively inhibit endogenous substrates for the enzyme. Secondly, we ascertained that the enzymatic cleft of DPP-4 is a relatively large cavity which displays conformational flexibility to accommodate structurally diverse inhibitor molecules. Finally, we found that for all inhibitors, irrespective of their chemical structure, the inhibition of plasma DPP-4 enzyme activity correlates directly with acute plasma glucose lowering in mice. Conclusion: The common binding site utilized by different DPP-4 inhibitors enables similar competitive inhibition of the cleavage of the endogenous DPP-4 substrates. Furthermore, despite chemical diversity and a range of binding potencies observed amongst the DPP-4 inhibitors, a direct relationship between enzyme inhibition in the plasma and glucose lowering is evident in mice for each member of the classes studied.
Novel potent and selective 5,6,5- and 5,5,6-tricyclic pyrrolidine dipeptidyl peptidase IV (DPP-4) inhibitors were identified. Structure-activity relationship (SAR) efforts focused on improving the intrinsic DPP-4 inhibition potency, increasing protease selectivity, and demonstrating clean ion channel and cytochrome P450 profiles while trying to achieve a pharmacokinetic profile suitable for once weekly dosing in humans.
Molecular modeling of unbound tricyclic guanine scaffolds indicated that they can serve as effective bioisosteric replacements of xanthines. This notion was further confirmed by a combination of X-ray crystallography and SAR studies, indicating that tricyclic guanine DPP4 inhibitors mimic the binding mode of xanthine inhibitors, exemplified by linagliptin. Realization of the bioisosteric relationship between these scaffolds potentially will lead to a wider application of cyclic guanines as xanthine replacements in drug discovery programs for a variety of biological targets. Newly designed DPP4 inhibitors achieved sub-nanomolar potency range and demonstrated oral activity in vivo in mouse glucose tolerance test.
In our efforts to develop second generation DPP-4 inhibitors, we endeavored to identify distinct structures with long-acting (once weekly) potential. Taking advantage of X-ray cocrystal structures of sitagliptin and other DPP-4 inhibitors, such as alogliptin and linagliptin bound to DPP-4, and aided by molecular modeling, we designed several series of heterocyclic compounds as initial targets. During their synthesis, an unexpected chemical transformation provided a novel tricyclic scaffold that was beyond our original design. Capitalizing on this serendipitous discovery, we have elaborated this scaffold into a very potent and selective DPP-4 inhibitor lead series, as highlighted by compound 17c.
In our effort to discover DPP-4 inhibitors with added benefits over currently commercially available DPP-4 inhibitors, MK-3102 (omarigliptin), was identified as a potent and selective dipeptidyl peptidase 4 (DPP-4) inhibitor with an excellent pharmacokinetic profile amenable for once-weekly human dosing and selected as a clinical development candidate. This manuscript summarizes the mechanism of action, scientific rationale, medicinal chemistry, pharmacokinetic properties, and human efficacy data for omarigliptin, which is currently in phase 3 clinical development.
A new series of DPP-4 inhibitors derived from piperidine-fused benzimidazoles and imidazopyridines is described. Optimization of this class of DPP-4 inhibitors led to the discovery of imidazopyridine 34. The potency, selectivity, cross-species DMPK profiles, and in vivo efficacy of 34 is reported.
The synthesis, selectivity, rat pharmacokinetic profile, and drug metabolism profiles of a series of potent fluoroolefin-derived DPP-4 inhibitors (4) are reported. A radiolabeled fluoroolefin 33 was shown to possess a high propensity to form reactive metabolites, thus revealing a potential liability for this class of DPP-4 inhibitors.
A series of beta-aminoamides bearing triazolopiperazines have been discovered as potent, selective, and orally active dipeptidyl peptidase IV (DPP-4) inhibitors by extensive structure-activity relationship (SAR) studies around the triazolopiperazine moiety. Among these, compound 34b with excellent in vitro potency (IC50 = 4.3 nM) against DPP-4, high selectivity over other enzymes, and good pharmacokinetic profiles exhibited pronounced in vivo efficacy in an oral glucose tolerance test (OGTT) in lean mice. On the basis of these properties, compound 34b has been profiled in detail. Further refinement of the triazolopiperazines resulted in the discovery of a series of extremely potent compounds with subnanomolar activity against DPP-4 (42b- 49b), that is, 4-fluorobenzyl-substituted compound 46b, which is notable for its superior potency (IC50 = 0.18 nM). X-ray crystal structure determination of compounds 34b and 46b in complex with DPP-4 enzyme revealed that (R)-stereochemistry at the 8-position of triazolopiperazines is strongly preferred over (S) with respect to DPP-4 inhibition.
Probing with tool molecules, and by modeling and X-ray crystallography the binding modes of two structurally distinct series of DPP-4 inhibitors led to the discovery of a rare aromatic fluorine H-bond and the spatial requirement for better biaryl binding in the DPP-4 enzyme active site. These newly found binding elements were successfully incorporated into novel DPP-4 inhibitors.
Replacement of the triazolopiperazine ring of sitagliptin (DPP-4 IC(50)=18nM) with 3-(2,2,2-trifluoroethyl)-1,4-diazepan-2-one gave dipeptidyl peptidase IV (DPP-4) inhibitor 1 which is potent (DPP-4 IC(50)=2.6nM), selective, and efficacious in an oral glucose tolerance test in mice. It was selected for extensive preclinical development as a potential back-up candidate to sitagliptin.
Molecular modeling was used to design a rigid analog of sitagliptin 1. The X-ray crystal structure of sitagliptin bound to DPP-4 suggested that the central beta-amino butyl amide moiety could be replaced with a cyclohexylamine group. This was confirmed by structural analysis and the resulting analog 2a was synthesized and found to be a potent DPP-4 inhibitor (IC(50)=21 nM) with excellent in vivo activity and pharmacokinetic profile.
A novel series of 4-aminophenylalanine and 4-aminocyclohexylalanine derivatives were designed and evaluated as inhibitors of dipeptidyl peptidase IV (DPP-4). The phenylalanine series afforded compounds such as 10 that were potent and selective (DPP-4, IC(50)=28nM), but exhibited limited oral bioavailability. The corresponding cyclohexylalanine derivatives such as 25 afforded improved PK exposure and efficacy in a murine OGTT experiment. The X-ray crystal structure of 25 bound to the DPP-4 active site is presented.
Molecular modeling was used to improve potency of the cyclohexylamine series. In addition, a 3-D QSAR method was used to gain insight for reducing off-target DPP-8/9 activities. Compounds 3, 4, and 5 were synthesized and found to be potent DPP-4 inhibitors, in particular 4 and 5 are designed to be highly selective against off-target DASH enzymes while maintaining potency on DPP-4.
A novel series of 4-arylcyclohexylalanine DPP-4 inhibitors was synthesized and tested for inhibitory activity as well as selectivity over the related proline-specific enzymes DPP-8 and DPP-9. Optimization of this series led to 28 (DPP-4 IC(50)=4.8 nM), which showed an excellent pharmacokinetic profile across several preclinical species. Evaluation of 28 in an oral glucose tolerance test demonstrated that this compound effectively reduced glucose excursion in lean mice.
Various beta-amino amides containing triazolopiperazine heterocycles have been prepared and evaluated as potent, selective, orally active dipeptidyl peptidase IV (DPP-4) inhibitors. These compounds display excellent oral bioavailability and good overall pharmacokinetic profiles in preclinical species. Moreover, in vivo efficacy in an oral glucose tolerance test in lean mice is demonstrated.
A series of beta-substituted biarylphenylalanine amides were synthesized and evaluated as inhibitors of dipeptidyl peptidase IV (DPP-4) for the treatment of type 2 diabetes. Optimization of the metabolic profile of early analogues led to the discovery of (2S,3S)-3-amino-4-(3,3-difluoropyrrolidin-1-yl)-N,N-dimethyl-4-oxo-2-(4-[1,2,4]tr iazolo[1,5-a]pyridin-6-ylphenyl)butanamide (6), a potent, orally active DPP-4 inhibitor (IC(50) = 6.3 nM) with excellent selectivity, oral bioavailability in preclinical species, and in vivo efficacy in animal models. Compound 6 was selected for further characterization as a potential new treatment for type 2 diabetes.
A novel series of oxadiazole based amides have been shown to be potent DPP-4 inhibitors. The optimized compound 43 exhibited excellent selectivity over a variety of DPP-4 homologs.
A novel series of beta-amino amides incorporating fused heterocycles, i.e., triazolopiperazines, were synthesized and evaluated as inhibitors of dipeptidyl peptidase IV (DPP-IV) for the treatment of type 2 diabetes. (2R)-4-Oxo-4-[3-(trifluoromethyl)-5,6-dihydro[1,2,4]triazolo[4,3-a]pyrazin-7(8H)- yl]-1-(2,4,5-trifluorophenyl)butan-2-amine (1) is a potent, orally active DPP-IV inhibitor (IC(50) = 18 nM) with excellent selectivity over other proline-selective peptidases, oral bioavailability in preclinical species, and in vivo efficacy in animal models. MK-0431, the phosphate salt of compound 1, was selected for development as a potential new treatment for type 2 diabetes.