Numerous marine sponges harbor enormous amounts of as-yet-uncultivated bacteria in their tissues. There is increasing evidence that these symbionts play an important role in the synthesis of protective metabolites, many of which are of great pharmacological interest. In this study, genes for the biosynthesis of polyketides, one of the most important classes of bioactive natural products, were systematically investigated in 20 demosponge species from different oceans. Unexpectedly, the sponge metagenomes were dominated by a ubiquitously present, evolutionarily distinct, and highly sponge-specific group of polyketide synthases (PKSs). Open reading frames resembling animal fatty acid genes were found on three corresponding DNA regions isolated from the metagenomes of Theonella swinhoei and Aplysina aerophoba. Their architecture suggests that methyl-branched fatty acids are the metabolic product. According to a phylogenetic analysis of housekeeping genes, at least one of the PKSs belongs to a bacterium of the Deinococcus-Thermus phylum. The results provide new insights into the chemistry of sponge symbionts and allow inference of a detailed phylogeny of the diverse functional PKS types present in sponge metagenomes. Based on these qualitative and quantitative data, we propose a significantly simplified strategy for the targeted isolation of biomedically relevant PKS genes from complex sponge-symbiont associations.
        
Title: Chalcomycin biosynthesis gene cluster from Streptomyces bikiniensis: novel features of an unusual ketolide produced through expression of the chm polyketide synthase in Streptomyces fradiae Ward SL, Hu Z, Schirmer A, Reid R, Revill WP, Reeves CD, Petrakovsky OV, Dong SD, Katz L Ref: Antimicrobial Agents & Chemotherapy, 48:4703, 2004 : PubMed
Chalcomycin, a 16-membered macrolide antibiotic made by the bacterium Streptomyces bikiniensis, contains a 2,3-trans double bond and the neutral sugar D-chalcose in place of the amino sugar mycaminose found in most other 16-membered macrolides. Degenerate polyketide synthase (PKS)-specific primers were used to amplify DNA fragments from S. bikiniensis with very high identity to a unique ketosynthase domain of the tylosin PKS. The resulting amplimers were used to identify two overlapping cosmids encompassing the chm PKS. Sequencing revealed a contiguous segment of >60 kb carrying 25 putative genes for biosynthesis of the polyketide backbone, the two deoxysugars, and enzymes involved in modification of precursors of chalcomycin or resistance to it. The chm PKS lacks the ketoreductase and dehydratase domains in the seventh module expected to produce the 2,3-double bond in chalcomycin. Expression of PKS in the heterologous host Streptomyces fradiae, from which the tyl genes encoding the PKS had been removed, resulted in production of at least one novel compound, characterized as a 3-keto 16-membered macrolactone in equilibrium with its 3-trans enol tautomer and containing the sugar mycaminose at the C-5 position, in agreement with the structure predicted on the basis of the domain organization of the chm PKS. The production of a 3-keto macrolide from the chm PKS indicates that a discrete set of enzymes is responsible for the introduction of the 2,3-trans double bond in chalcomycin. From comparisons of the open reading frames to sequences in databases, a pathway for the synthesis of nucleoside diphosphate-D-chalcose was proposed.
We illustrate the use of a PCR-based method by which the genomic DNA of a microorganism can be rapidly queried for the presence of type I modular polyketide synthase genes to clone and characterize, by sequence analysis and gene disruption, a major portion of the geldanamycin production gene cluster from Streptomyces hygroscopicus var. geldanus NRRL 3602.
Stimulated by the commercial availability of bacteriologically produced polyesters such as poly[(R)-3-hydroxybutyric acid], and encouraged by the discovery of new constituents of polyhydroxyalkanoic acids (PHA), a considerable body of knowledge on the metabolism of PHA in microorganisms has accumulated. The objective of this essay is to give an overview on the biodegradation of PHA. The following topics are discussed: (i) general considerations of PHA degradation, (ii) methods for identification and isolation of PHA-degrading microorganisms, (iii) characterization of PHA-degrading microorganisms, (iv) biochemical properties of PHA depolymerases, (v) mechanisms of PHA hydrolysis, (vi) regulation of PHA depolymerase synthesis, (vii) molecular biology of PHA depolymerases, (viii) influence of the physicochemical properties of PHA on its biodegradability, (ix) degradation of polyesters related to PHA, (x) biotechnological aspects of PHA and PHA depolymerases.
By using selective enrichment of polyhydroxyalkanoate-degrading bacteria and poly(3-hydroxyvalerate)-containing granules from Chromobacterium violaceum as the carbon source, 10 new Pseudomonas lemoignei strains were isolated; these strains were able to degrade poly(3-hydroxyvalerate), as well as poly(3-hydroxybutyrate), in vitro. The new isolates were characterized and identified by comparing them with P. lemoignei LMG 2207(T) (T = type strain). Like P. lemoignei LMG 2207(T) cells, the cells of the 10 new isolates contained mainly hexadecenoic, hexadecanoic, octadecenoic, and dodecanoic acids, as well as hydroxylated fatty acids, and exhibited respiration in the presence of methylpyruvate, 3-hydroxybutyrate, and 4-hydroxybutyrate, but not in the presence of the 92 other carbon sources included in Biolog GN microplates. The protein patterns of the new isolates were almost identical to each other and very similar to the protein pattern of P. lemoignei LMG 2207(T). Some of the new isolates, but not P. lemoignei LMG 2207(T), contained megaplasmids that were about 200 kbp long. The 16S ribosomal DNA genes of strain A62, a representative of the 10 new isolates, and of P. lemoignei LMG 2207(T) exhibited more than 0.99 sequence similarity. The DNA-DNA reassociation value for two representative strains was 100%, and the levels of DNA-DNA reassociation between these strains and the type strain were 60 and 61%. The taxonomy of P. lemoignei is briefly discussed.
        
Title: Substrate specificities of poly(hydroxyalkanoate)-degrading bacteria and active site studies on the extracellular poly(3-hydroxyoctanoic acid) depolymerase of Pseudomonas fluorescens GK13 Schirmer A, Matz C, Jendrossek D Ref: Can J Microbiol, 41 Suppl 1:170, 1995 : PubMed
The isolation of poly(3-hydroxyoctanoic acid)- and poly(6-hydroxyhexanoic acid)-degrading bacteria yielded 28 strains with abilities to degrade various polymers. The most versatile strains hydrolyzed five different polyesters comprising short chain length and medium chain length poly(hydroxyalkanoates). The new isolates together with previously isolated poly(hydroxyalkanoate)-degrading bacteria were classified into 11 groups with respect to their polymer-degrading specificities. All PHA depolymerases studied so far have been characterized by the lipase consensus sequence Gly-X-Ser-X-Gly in their amino acid sequence, which is a known sequence for serine hydrolases. When we replaced the central residue, Ser-172, in the corresponding sequence Gly-Ile-Ser-Ser-Gly of the extracellular poly(3-hydroxyoctanoic acid) depolymerase of Pseudomonas fluorescens GK13, with alanine the enzyme lost its activity completely. This result of the mutational experiment indicates that the poly(3-hydroxyoctanoic acid) depolymerase belongs to the family of serine hydrolases.
        
Title: Molecular characterization of the extracellular poly(3-hydroxyoctanoic acid) [P(3HO)] depolymerase gene of Pseudomonas fluorescens GK13 and of its gene product Schirmer A, Jendrossek D Ref: Journal of Bacteriology, 176:7065, 1994 : PubMed
phaZPfi, the gene encoding the extracellular poly(3-hydroxyoctanoic acid) depolymerase of Pseudomonas fluorescens GK13, was cloned, sequenced, and characterized. It comprises 837 bp and is transcribed as a monocistronic message of about 950 bp from a putative sigma 70-like promoter 32 bp upstream of the ATG start codon. The deduced protein of 278 amino acids reveals a typical leader peptide at its N terminus. When expressed in Escherichia coli, the mature depolymerase started with Ala-23, whereas the mature enzyme purified from P. fluorescens GK13 started with both Leu-34 and Arg-35 determining proteins of 26,687 and 26,573 Da, respectively. The depolymerase is a strongly hydrophobic protein and includes the lipase consensus sequence Gly-X-Ser-X-Gly, which is known for serine hydrolases. Replacement of the central residue, Ser-172, in the corresponding sequence (Gly-Ile-Ser-Ser-Gly) of PhaZPfl with alanine resulted in complete loss of enzyme activity, indicating that the poly(3-hydroxyoctanoic acid) depolymerase belongs to the family of serine hydrolases.
        
Title: Degradation of poly(3-hydroxyoctanoic acid) [P(3HO)] by bacteria: purification and properties of a P(3HO) depolymerase from Pseudomonas fluorescens GK13 Schirmer A, Jendrossek D, Schlegel HG Ref: Applied Environmental Microbiology, 59:1220, 1993 : PubMed
Twenty-five gram-negative bacteria and one gram-positive bacterium capable of growing on poly(3-hydroxyoctanoic acid) [P(3HO)] as the sole source of carbon and energy were isolated from various soils, lake water, and activated sludge. Most of the isolates degraded only P(3HO) and copolymers of medium-chain-length (MCL) hydroxyalkanoic acids (HA). Except for the gram-positive strain, which was able to hydrolyze P(3HO) and poly(3-hydroxybutyric acid) [P(3HB)], no isolate was able to degrade polymers of short-chain-length HA, such as P(3HB) or poly(3-hydroxyvalerate) [P(3HV)]. All strains utilized a large variety of monomeric substrates for growth. All gram-negative strains, but not the gram-positive strain, accumulated poly(hydroxyalkanoic acids) (PHA), consisting of MCL HA, if they were cultivated under accumulation conditions. One strain, which was identified as Pseudomonas fluorescens GK13 (biovar V), was selected and the extracellular P(3HO) depolymerase of this strain was purified from the culture medium of P(3HO)-grown cells by chromatography with Octyl-Sepharose CL4B and by gel filtration with Superose 12. The relative molecular weights of the native and sodium dodecyl sulfate-treated enzymes were 48,000 and 25,000, respectively. The purified enzyme hydrolyzed P(3HO), copolymers of MCL HA, and para-nitrophenyl esters of fatty acids. P(3HB), P(3HV), and characteristic substrates for lipases, such as Tween 80 or triolein, were not hydrolyzed. The P(3HO) depolymerase of P. fluorescens GK13 was insensitive to phenylmethylsulfonyl fluoride and dithioerythritol, unlike other PHA depolymerases. The dimeric ester of 3-hydroxyoctanoic acid was identified as the main product of enzymatic hydrolysis of P(3HO).(ABSTRACT TRUNCATED AT 250 WORDS)