In vivo estimation of beta(2)-nicotinic acetylcholine receptor availability with molecular neuroimaging is complicated by competition between the endogenous neurotransmitter acetylcholine and the radioligand (123)I-3-[2(S)-2-azetidinylmethoxy]pyridine ((123)I-5-IA). We examined whether binding of (123)I-5-IA is sensitive to increases in extracellular levels of acetylcholine in humans, as suggested in nonhuman primates. METHODS: Six healthy subjects (31 +/- 4 y) participated in a (123)I-5-IA SPECT study. After baseline scans, physostigmine (1-1.5 mg) was administered intravenously over 60 min, and 9 additional scans were obtained. RESULTS: We observed a significant reduction in the total volume of distribution after physostigmine administration (29% +/- 17% in the cortex, 19% +/- 15% in the thalamus, 19% +/- 15% in the striatum, and 36% +/- 30% in the cerebellum; P < 0.05). This reduction reflected a combination of a region-specific 7%-16% decrease in tissue concentration of tracer and a 9% increase in plasma parent concentration. CONCLUSION: These data suggest that increases in acetylcholine compete with (123)I-5-IA for binding to beta(2)-nicotinic acetylcholine receptor. Additional validation of this paradigm is warranted, but it may be used to interrogate changes in extracellular acetylcholine.
BACKGROUND: The cholinergic system is substantially altered in individuals with major depression and is partially restored when depression remits. We quantified the availability of beta2-subunit-containing nicotinic acetylcholine receptors (beta2*-nAChR) in subjects with bipolar disorder. METHODS: Twenty-five subjects with bipolar disorder (15 depressed, 10 euthymic) and 25 sex- and age-matched control subjects had a [(123)I]5IA-85380 single photon emission computed tomography scan to quantify beta2*-nAChR VT/fP (total volume of distribution, corrected for individual differences in metabolism and protein binding of the radiotracer). Average VT/fP was compared between groups and correlated with clinical characteristics. Postmortem analysis of beta2*-nAChRs was conducted using equilibrium binding with [(125)I]5IA in subjects with bipolar disorder and matched control subjects. RESULTS: We showed significantly lower beta2*-nAChR availability (20%-38%) in subjects with bipolar depression compared with euthymic and control subjects across all brain regions assessed (frontal, parietal, temporal, and anterior cingulate cortex, hippocampus, amygdala, thalamus, striatum). The postmortem binding study in which endogenous acetylcholine was washed out did not show a statistically significant difference in beta2*-nAChR number in temporal cortex of the bipolar depressed and control groups (15% difference; p = .2). CONCLUSIONS: We show that the alteration in the cholinergic system observed during a depressive episode appears to resolve during euthymia. We suggest that lower VT/fP observed in vivo may be due to a combination of higher endogenous acetylcholine levels during depression, which could compete with radiotracer binding to the receptor in vivo, and lower receptor number in bipolar depression. Identification of differences in cholinergic signaling in subjects with bipolar depression may improve our understanding of its etiology and reveal new treatment targets.
CONTEXT: Sex differences exist in the reinforcing effects of nicotine, smoking cessation rates, and response to nicotine therapies. Sex differences in availability of nicotinic acetylcholine receptors containing the beta(2) subunit (beta(2)*-nAChRs) may underlie differential nicotine and tobacco smoking effects and related behaviors in women vs men. OBJECTIVES: To examine beta(2)*-nAChR availability in male and female smokers vs nonsmokers and to determine associations among beta(2)*-nAChR availability, tobacco smoking characteristics, and female sex steroid hormone levels. DESIGN: Male (n = 26) and female (n = 28) tobacco smokers participated in an iodide 123-labeled 5-iodo-A-85380 ([(123)I]5-IA) single-photon emission computed tomography (SPECT) imaging session at 7 to 9 days of abstinence. Age-matched male (n = 26) and female (n = 30) nonsmokers participated in a [(123)I]5-IA SPECT imaging session. All participants completed a magnetic resonance imaging study. SETTING: Academic imaging center. PARTICIPANTS: Tobacco smokers (n = 54) and age- and sex-matched nonsmokers (n = 56). MAIN OUTCOME MEASURE: The [(123)I]5-IA SPECT images were converted to equilibrium distribution volumes and were analyzed using regions of interest. RESULTS: The beta(2)*-nAChR availability was significantly higher in male smokers compared with male nonsmokers in striatum, cortex, and cerebellum, but female smokers did not have higher beta(2)*-nAChR availability than female nonsmokers in any region. In women, beta(2)*-nAChR availability in the cortex and cerebellum was negatively and significantly correlated with progesterone level on the SPECT imaging day. In female smokers on imaging day, the progesterone level was positively and significantly correlated with depressive symptoms, craving for a cigarette, and nicotine withdrawal. CONCLUSIONS: The regulatory effects of nicotine in the brain (ie, tobacco smoking-induced upregulation of beta(2)*-nAChRs) seem to be distinctly different between men and women, and female sex steroid hormones likely have a role in this regulation. These findings suggest an underlying neurochemical mechanism for the reported behavioral sex differences. To treat female smokers more effectively, it is critical that nonnicotinic-mediated medications should be explored.
Neuronal acetylcholine nicotinic receptors (nAChRs) are targets for the development of novel treatments of brain diseases. However, adverse effects (for example, emesis or nausea) associated with high drug maximal exposures or C(max) at nAChRs often hinder the advancement of experimental compounds in clinical trials. Therefore, it is essential to explore the feasibility of maintaining exposures below a predetermined C(max) while sustaining targeted CNS effects. By use of a [(1)(2)(3)I]5-IA [5-[(1)(2)(3)I]iodo-3-[2(S)-azetidinylmethoxy]pyridine] displacement SPECT imaging paradigm in nonhuman primates, we compared brain nAChR binding activity elicited by either a bolus injection or by slow infusion of an identical dose of a novel neuronal nicotinic agonist, ABT-089 [2-methyl-3-(2-(S)-pyrrolidinylmethoxy)pyridine dihydrochloride], where the slow infusion scheme was derived from a two-compartment pharmacokinetic modeling designed to limit the C(max). We determined [(1)(2)(3)I]5-IA displacement using doses of ABT-089 (0.04, 0.4, and 1.0 mg/kg i.v.) that encompassed efficacious drug exposures in nonhuman primates and examined the relationship between ABT-089 displacement ratios and plasma exposures. Our results indicated that calculated displacement ratios were quite similar between the two different dosing regimens despite substantial differences in C(max). In addition, displacement ratios correlated well with drug exposures calculated as the area-under-curve (AUC) of plasma concentration and varied in a dose-dependent manner, suggesting that displacement ratios are driven by the AUC of drug plasma exposure but not C(max). Our data demonstrate the feasibility of predicting plasma exposures using a two-compartment pharmacokinetic model and its potential for optimizing dosing regimens.
The Nicotrol(R) (Pfizer, USA) nicotine inhaler reduces craving by mimicking the behavioural component of cigarettes and delivering controlled doses of nicotine, which binds to the beta-2 subunit-containing nicotinic acetylcholine receptors (beta2*-nAChRs). Previous studies examined beta2*-nAChR occupancy after administration of regular and low-nicotine cigarettes. Here, we measured occupancy of beta2*-nAChRs after administration of nicotine via inhaler, and the relationship between occupancy and changes in craving for tobacco smoking and withdrawal symptoms. Tobacco smokers participated in [123I]5-IA-85380 SPECT studies with either a nicotine inhaler (n=9) or tobacco cigarette (n=4) challenge. [123I]5-IA was administered as a bolus plus constant infusion. After equilibrium was achieved, three 30-min baseline scans were collected, and subjects either used the nicotine inhaler or a regular cigarette, and up to six additional scans were obtained. Receptor occupancy was determined based on the Lassen plot method. Craving for tobacco smoking and withdrawal symptoms were evaluated pre- and post-challenge. Use of the nicotine inhaler produced an average 55.9+/-6.4% occupancy of beta2*-nAChRs 2-5 h post-challenge, whereas use of a cigarette produced significantly higher receptor occupancy (F=10.6, p=0.009) with an average 67.6+/-14.1% occupancy 1.5-5 h post-challenge. There was a significant decrease in withdrawal symptoms post-nicotine inhaler use (F=6.13, p=0.04). These results demonstrate significant differences in occupancy of beta2*-nAChRs by nicotine after use of the inhaler vs. a cigarette and confirm the ability of the nicotine inhaler to relieve withdrawal symptoms.
Nicotine, the addictive chemical in tobacco smoke, initiates its actions in brain through nicotinic acetylcholine receptors (nAChRs). In particular, nAChRs containing beta2-subunits (beta2*-nAChRs) the most prevalent subtype, mediate the reinforcing properties of nicotine. We hypothesized that abnormal numbers of beta2*-nAChRs during early abstinence contribute to the perpetuation of addiction to tobacco smoking. Using molecular imaging, specifically single-photon emission computed tomography with the nAChR agonist radiotracer [123I]5-IA-85380 ([123I]5-IA), we imaged beta2*-nAChR availability in human smokers. First, using nonhuman primates treated chronically with nicotine, we estimated the time interval necessary for smokers to abstain from smoking so that residual nicotine would not interfere with [123I]5-IA binding to the beta2*-nAChR as approximately 7 d. Thus, we imaged human smokers at 6.8 +/- 1.9 d (mean +/- SD) of abstinence. Abstinence was confirmed by daily assessments of urinary cotinine and expired carbon monoxide levels. In smokers, [123I]5-IA uptake was significantly higher throughout the cerebral cortex (26-36%) and in the striatum (27%) than in nonsmokers, suggesting higher beta2*-nAChR in recently abstinent smokers. Beta2*-nAChR availability in recently abstinent smokers correlated with the days since last cigarette and the urge to smoke to relieve withdrawal symptoms but not the severity of nicotine dependence, severity of nicotine withdrawal, or the desire to smoke. Higher brain beta2*-nAChR during early abstinence indicates that, when smokers quit smoking, they do so in the face of a significant increase in the receptors normally activated by nicotine. Greater beta2*-nAChR availability during early abstinence may impact the ability of smokers to maintain abstinence.
The purpose of this study was to assess the utility of a new single-photon emission tomography ligand, [123I]5-iodo-3-[2(S)-2-azetidinylmethoxy]pyridine (5-I-A-85380), to measure regional nAChR binding in human brain. Six healthy nonsmoker subjects (two men and four women, age 33 +/- 15 years) participated in both a bolus (dose: 317 +/- 42 MBq) and a bolus plus constant infusion (dose of bolus: 98 +/- 32 MBq, B/I=6.7 +/- 2.6 h, total dose: 331 +/- 55 MBq) study. The study duration was 5-8 h and 14 h in the former and the latter, respectively. Nonlinear least-squares compartmental analysis was applied to bolus studies to calculate total (VT') and specific (VS') distribution volumes. A two-tissue compartment model was applied to identify VS'. VT' was also calculated in B/I studies. In bolus studies, VT' was well identified by both one- and two-tissue compartment models, with a coefficient of variation of less than 5% in most regions. The two-compartment model gave VT' values of 51, 22, 27, 32, 20, 19, 20, and 17 ml cm(-3) in thalamus, cerebellum, putamen, pons, and frontal, parietal, temporal, and occipital cortices, respectively. The two-compartment model did not identify VS' well. B/I studies provided poor accuracy of VT' measurement, possibly due to deviations from equilibrium conditions. These results demonstrate the feasibility of quantifying high-affinity type nAChRs using [123I]5-I-A-85380 in humans and support the use of VT' measured by bolus studies.
The biodistribution of radioactivity after the administration of a new tracer for alpha4beta2 nicotinic acetylcholine receptors (nAChRs), [123I]5-iodo-3-[2(S)-2-azetidinylmethoxy]pyridine (5-I-A-85380), was studied in ten healthy human subjects. Following administration of 98+/-6 MBq [123I]5-I-A-85380, serial whole-body images were acquired over 24 h and corrected for attenuation. One to four brain single-photon emission tomography (SPET) images were also acquired between 2.5 and 24 h. Estimates of radiation absorbed dose were calculated using MIRDOSE 3.1 with a dynamic bladder model and a dynamic gastrointestinal tract model. The estimates of the highest absorbed dose (microGy/MBq) were for the urinary bladder wall (71 and 140), lower large intestine wall (70 and 72), and upper large intestine wall (63 and 64), with 2.4-h and 4.8-h urine voiding intervals, respectively. The whole brain activity at the time of the initial whole-body imaging at 14 min was 5.0% of the injected dose. Consistent with the known distribution of alpha4beta2 nAChRs, SPET images showed the highest activity in the thalamus. These results suggest that [123I]5-I-A-85380 is a promising SPET agent to image alpha4beta2 nAChRs in humans, with acceptable dosimetry and high brain uptake.