The shift from outcrossing to selfing is common in flowering plants, but the genomic consequences and the speed at which they emerge remain poorly understood. An excellent model for understanding the evolution of self fertilization is provided by Capsella rubella, which became self compatible <200,000 years ago. We report a C. rubella reference genome sequence and compare RNA expression and polymorphism patterns between C. rubella and its outcrossing progenitor Capsella grandiflora. We found a clear shift in the expression of genes associated with flowering phenotypes, similar to that seen in Arabidopsis, in which self fertilization evolved about 1 million years ago. Comparisons of the two Capsella species showed evidence of rapid genome-wide relaxation of purifying selection in C. rubella without a concomitant change in transposable element abundance. Overall we document that the transition to selfing may be typified by parallel shifts in gene expression, along with a measurable reduction of purifying selection.
        
Title: Reduced efficacy of natural selection on codon usage bias in selfing Arabidopsis and Capsella species Qiu S, Zeng K, Slotte T, Wright S, Charlesworth D Ref: Genome Biol Evol, 3:868, 2011 : PubMed
Population genetic theory predicts that the efficacy of natural selection in a self-fertilizing species should be lower than its outcrossing relatives because of the reduction in the effective population size (N(e)) in the former brought about by inbreeding. However, previous analyses comparing Arabidopsis thaliana (selfer) with A. lyrata (outcrosser) have not found conclusive support for this prediction. In this study, we addressed this issue by examining silent site polymorphisms (synonymous and intronic), which are expected to be informative about changes in N(e). Two comparisons were made: A. thaliana versus A. lyrata and Capsella rubella (selfer) versus C. grandiflora (outcrosser). Extensive polymorphism data sets were obtained by compiling published data from the literature and by sequencing 354 exon loci in C. rubella and 89 additional loci in C. grandiflora. To extract information from the data effectively for studying these questions, we extended two recently developed models in order to investigate detailed selective differences between synonymous codons, mutational biases, and biased gene conversion (BGC), taking into account the effects of recent changes in population size. We found evidence that selection on synonymous codons is significantly weaker in the selfers compared with the outcrossers and that this difference cannot be fully accounted for by mutational biases or BGC.
        
Title: Genome-wide evidence for efficient positive and purifying selection in Capsella grandiflora, a plant species with a large effective population size Slotte T, Foxe JP, Hazzouri KM, Wright SI Ref: Molecular Biology Evolution, 27:1813, 2010 : PubMed
Recent studies comparing genome-wide polymorphism and divergence in Drosophila have found evidence for a surprisingly high proportion of adaptive amino acid fixations, but results for other taxa are mixed. In particular, few studies have found convincing evidence for adaptive amino acid substitution in plants. To assess the generality of this finding, we have sequenced 257 loci in the outcrossing crucifer Capsella grandiflora, which has a large effective population size and low population structure. Using a new method that jointly infers selective and demographic effects, we estimate that 40% of amino acid substitutions were fixed by positive selection in this species, and we also infer a low proportion of slightly deleterious amino acid mutations. We contrast these estimates with those for a similar data set from the closely related Arabidopsis thaliana and find significantly higher rates of adaptive evolution and fewer nearly neutral mutations in C. grandiflora. In agreement with results for other taxa, genes involved in reproduction show the strongest evidence for positive selection in C. grandiflora. Taken together, these results imply that both positive and purifying selection are more effective in C. grandiflora than in A. thaliana, consistent with the contrasting demographic history and effective population sizes of these species.