Title: Catalytically distinct states captured in a crystal lattice: the substrate-bound and scavenger states of acylaminoacyl peptidase and their implications for functionality Menyhard DK, Orgovan Z, Szeltner Z, Szamosi I, Harmat V Ref: Acta Crystallographica D Biol Crystallogr, 71:461, 2015 : PubMed
Acylaminoacyl peptidase (AAP) is an oligopeptidase that only cleaves short peptides or protein segments. In the case of AAP from Aeropyrum pernix (ApAAP), previous studies have led to a model in which the clamshell-like opening and closing of the enzyme provides the means of substrate-size selection. The closed form of the enzyme is catalytically active, while opening deactivates the catalytic triad. The crystallographic results presented here show that the open form of ApAAP is indeed functionally disabled. The obtained crystal structures also reveal that the closed form is penetrable to small ligands: inhibitor added to the pre-formed crystal was able to reach the active site of the rigidified protein, which is only possible through the narrow channel of the propeller domain. Molecular-dynamics simulations investigating the structure of the complexes formed with longer peptide substrates showed that their binding within the large crevice of the closed form of ApAAP leaves the enzyme structure unperturbed; however, their accessing the binding site seems more probable when assisted by opening of the enzyme. Thus, the open form of ApAAP corresponds to a scavenger of possible substrates, the actual cleavage of which only takes place if the enzyme is able to re-close.
Oligopeptidases impose a size limitation on their substrates, the mechanism of which has long been under debate. Here we present the structure of a hexameric serine protease, an oligopeptidase from Pyrococcus horikoshii (PhAAP), revealing a complex, self-compartmentalized inner space, where substrates may access the monomer active sites passing through a double-gated "check-in" system, first passing through a pore on the hexamer surface and then turning to enter through an even smaller opening at the monomers' domain interface. This substrate screening strategy is unique within the family. We found that among oligopeptidases, a residue of the catalytic apparatus is positioned near an amylogenic beta-edge, which needs to be protected to prevent aggregation, and we found that different oligopeptidases use different strategies to achieve such an end. We propose that self-assembly within the family results in characteristically different substrate selection mechanisms coupled to different multimerization states.
The biochemical properties and subcellular localization of prolyl endopeptidase (PREP) in brain are well characterized and its implications in the realization of cognitive processes and in the pathogenesis of neurodegenerative disorders are a matter of intensive investigation. In contrast, very little is known about its homolog, the PREP-like protein (PREPL). In order to obtain initial hints about the involvement of PREPL in physiological processes, a differential proteomic screen was performed with human skin fibroblasts from controls and patients with PREPL deficiency (hypotonia-cystinuria syndrome). The majority of affected proteins represented cytoskeletal proteins, including caldesmon, tropomyosin alpha3 chain, lamin A, beta-actin, gamma-actin, vimentin and zyxin. Therefore, the analysis of PREPL subcellular localization by confocal laser scanning and electron microscopy in mouse neurons was focused on the cytoskeleton. The co-localization of PREPL with cytoskeletal marker proteins such as beta-actin and microtubulin-associated protein-2 was observed, in addition to the presence of PREPL within Golgi apparatus and growth cones. In the mouse brain, PREPL is neuronally expressed and highly abundant in neocortex, substantia nigra and locus coeruleus. This mirrors to some extent the distribution pattern of PREP and points toward redundant functions of both proteins. In the human neocortex, PREPL immunostaining was found in the cytoplasm and in neuropil, in particular of layer V pyramidal neurons. This staining was reduced in the neocortex of Alzheimer's disease (AD) patients. Moreover, in AD brains, PREPL immunoreactivity was observed in the nucleus and in varicose neuritic processes. Our data indicate physiological functions of PREPL associated with the cytoskeleton, which may be affected under conditions of cytoskeletal degeneration.
Altered prolyl oligopeptidase (PREP) activity is found in many common neurological and other genetic disorders, and in some cases PREP inhibition may be a promising treatment. The active site of PREP resides in an internal cavity; in addition to the direct interaction between active site and substrate or inhibitor, the pathway to reach the active site (the gating mechanism) must be understood for more rational inhibitor design and understanding PREP function. The gating mechanism of PREP has been investigated through molecular dynamics (MD) simulation combined with crystallographic and mutagenesis studies. The MD results indicate the inter-domain loop structure, comprised of 3 loops at residues, 189-209 (loop A), 577-608 (loop B), and 636-646 (loop C) (porcine PREP numbering), are important components of the gating mechanism. The results from enzyme kinetics of PREP variants also support this hypothesis: When loop A is (1) locked to loop B through a disulphide bridge, all enzyme activity is halted, (2) nicked, enzyme activity is increased, and (3) removed, enzyme activity is only reduced. Limited proteolysis study also supports the hypothesis of a loop A driven gating mechanism. The MD results show a stable network of H-bonds that hold the two protein domains together. Crystallographic study indicates that a set of known PREP inhibitors inhabit a common binding conformation, and this H-bond network is not significantly altered. Thus the domain separation, seen to occur in lower taxa, is not involved in the gating mechanism for mammalian PREP. In two of the MD simulations we observed a conformational change that involved the breaking of the H-bond network holding loops A and B together. We also found that this network was more stable when the active site was occupied, thus decreasing the likelihood of this transition.
Prolyl oligopeptidase (POP) has emerged as a drug target for neurological diseases. A flexible loop structure comprising loop A (res. 189-209) and loop B (res. 577-608) at the domain interface is implicated in substrate entry to the active site. Here we determined kinetic and structural properties of POP with mutations in loop A, loop B, and in two additional flexible loops (the catalytic His loop, propeller Asp/Glu loop). POP lacking loop A proved to be an inefficient enzyme, as did POP with a mutation in loop B (T590C). Both variants displayed an altered substrate preference profile, with reduced ligand binding capacity. Conversely, the T202C mutation increased the flexibility of loop A, enhancing the catalytic efficiency beyond that of the native enzyme. The T590C mutation in loop B increased the preference for shorter peptides, indicating a role in substrate gating. Loop A and the His loop are disordered in the H680A mutant crystal structure, as seen in previous bacterial POP structures, implying coordinated structural dynamics of these loops. Unlike native POP, variants with a malfunctioning loop A were not inhibited by a 17-mer peptide that may bind non-productively to an exosite involving loop A. Biophysical studies suggest a predominantly closed resting state for POP with higher flexibility at the physiological temperature. The flexible loop A, loop B and His loop system at the active site is the main regulator of substrate gating and specificity and represents a new inhibitor target.
Acylaminoacyl peptidase from Aeropyrum pernix is a homodimer that belongs to the prolyl oligopeptidase family. The monomer subunit is composed of one hydrolase and one propeller domain. Previous crystal structure determinations revealed that the propeller domain obstructed the access of substrate to the active site of both subunits. Here we investigated the structure and the kinetics of two mutant enzymes in which the aspartic acid of the catalytic triad was changed to alanine or asparagine. Using different substrates, we have determined the pH dependence of specificity rate constants, the rate-limiting step of catalysis, and the binding of substrates and inhibitors. The catalysis considerably depended both on the kind of mutation and on the nature of the substrate. The results were interpreted in terms of alterations in the position of the catalytic histidine side chain as demonstrated with crystal structure determination of the native and two mutant structures (D524N and D524A). Unexpectedly, in the homodimeric structures, only one subunit displayed the closed form of the enzyme. The other subunit exhibited an open gate to the catalytic site, thus revealing the structural basis that controls the oligopeptidase activity. The open form of the native enzyme displayed the catalytic triad in a distorted, inactive state. The mutations affected the closed, active form of the enzyme, disrupting its catalytic triad. We concluded that the two forms are at equilibrium and the substrates bind by the conformational selection mechanism.
It has recently been proposed that prolyl oligopeptidase (POP), the cytosolic serine peptidase with neurological implications, binds GAP43 (Growth-Associated Protein 43) and is implicated in neuronal growth cone formation, axon guidance and synaptic plasticity. We investigated the interaction between GAP43 and POP with various biophysical and biochemical methods in vitro and studied the co-localisation of the two proteins in differentiated HeLa cells. GAP43 and POP showed partial co-localisation in the cell body as well as in the potential growth cone structures. We could not detect significant binding between the recombinantly expressed POP and GAP43 using gel filtration, CD, ITC and BIACORE studies, pull-down experiments, glutaraldehyde cross-linking and limited proteolysis. However, glutaraldehyde cross-linking suggested a weak and transient interaction between the proteins. Both POP and GAP43 interacted with artificial lipids in our in vitro model system, but the presence of lipids did not evoke binding between them. In native polyacrylamide gel electrophoresis, GAP43 interacted with one of the three forms of a polyhistidine-tagged prolyl oligopeptidase. The interaction of the two proteins was also evident in ELISA and we have observed co-precipitation of the two proteins during co-incubation at higher concentrations. Our results indicate that there is no strong and direct interaction between POP and GAP43 at physiological conditions.
We have overexpressed in E. coli, purified and investigated the kinetic, thermodynamic and biophysical properties of an acylaminoacyl peptidase (AAP), from the thermophile Pyrococcus horikoshii (PhAAP). It was shown that the electrostatic environment of the catalytic site of PhAAP substantially influenced the pH dependence of the specificity rate constant (k(cat)/K(m)). However, 0.3 M NaCl, which depressed the electrostatic effects, simplified the complex pH-rate profile. The rate of formation of the enzyme-substrate complex (k(1)) was obtained from a non-linear Arrhenius plot. The lack of substrate leaving group effects indicated that k(1) is the rate determining step in the catalysis. DSC and CD measurements demonstrated that PhAAP displayed a stable structure in the catalytically competent pH range. It was shown that PhAAP is not just an acylaminoacyl peptidase, but it also has an endopeptidase activity and so differs from the mammalian AAPs. Size exclusion chromatography with PhAAP revealed a hexameric structure, which is unique among the known members of the prolyl oligopeptidase family that includes AAPs and suggests that its cellular function may be different from that of the dimeric AAP also found in the same organism.
        
Title: Structure, function and biological relevance of prolyl oligopeptidase Szeltner Z, Polgar L Ref: Curr Protein Pept Sci, 9:96, 2008 : PubMed
A group of serine peptidases, the prolyl oligopeptidase family, cannot hydrolyze proteins and peptides containing more than 30 residues. The crystal structure of prolyl oligopeptidase (POP) has shown that the enzyme is composed of a peptidase domain with an alpha/beta hydrolase fold and a seven-bladed beta-propeller domain. This domain covers the catalytic triad and excludes large, structured peptides from the active site. The mechanism of substrate selection has been reviewed, along with the binding mode of the substrate and the catalytic mechanism, which differ from that of the classical serine peptidases in several features. POP is essentially a cytosolic enzyme and has been shown to be involved in a number of biological processes, but its precise function is still unknown. Many reports addressed experimentally the possible role of POP in cognitive and psychiatric processes, its involvement in the inositol phosphate signaling pathway, and its ability to metabolize bioactive peptides. Inhibitors were designed to reveal the cellular functions of POP and to treat neurological disorders. Other studies concerned the cellular localization of POP, its presumed interaction with the cytoskeletal elements, and its involvement in peptide/protein transport/secretion processes. The possible role of POP in Alzheimer disease is an intriguing issue, which is still debated. Recently, recombinant bacterial POPs have been investigated as potential therapeutics for celiac sprue, an autoimmune disease of small intestine caused by the intake of gluten proteins.
Prolyl oligopeptidase (POP, EC 3.4.21.26) is a member of a family of serine peptidases with post-proline cleaving activity towards peptides. It is located in the cytosol in active form but without hydrolytic activity on proteins or peptides higher than 30 amino acids. Its function is not well defined, but it is involved in central nervous system disorders. Here, we studied the substrate specificity of wild type POP (POPwt) and its C255T variant lacking the non-catalytic Cys(255). This residue is located in the seven-bladed beta-propeller domain that regulates the activity of POP. Fluorescence resonance energy transfer (FRET) peptides were used with sequences derived from bradykinin-containing region of human kininogen and flanked by Abz (ortho-aminobenzoic acid) and EDDnp [N-ethylenediamine-(2,4-dinitrophenyl)]. The peptide Abz-GFSPFRQ-EDDnp was taken as leader substrate for the synthesis of five series of peptides modified at the P(3), P(2), P'(1), P'(2) and P'(3) residues. The optimal amino acids in each position for POPwt resulted in the sequence RRPYIR that is very similar to the C-terminal sequence of neurotensin. The cyclic peptides c(G((n))FSPFR) (n=1-4) were hydrolyzed by POP; their cycloretro and cycloretro-inverso analogues were inhibitors in the micromolar range. The differences between POPwt and its C255T mutant in the hydrolysis of the series derived from Abz-GFSPFRQ-EDDnp were restricted to the non-prime site of the substrates. The kinetic data of hydrolysis and inhibition by the cyclic peptides are consistent with the structures of POP-substrate/inhibitor complexes and with the substrate specificity data obtained with linear FRET peptides. All together, these results give information about the POP-substrate/inhibitor interactions that further complete knowledge of this important oligopeptidase.
        
Title: Truncated prolyl oligopeptidase from Pyrococcus furiosus Juhasz T, Szeltner Z, Polgar L Ref: Proteins, 69:633, 2007 : PubMed
The peptidase domain of prolyl oligopeptidase is covered by a propeller domain, which excludes large peptides and proteins from the catalytic triad. Previous studies indicated that some amino acids of the N-terminal region constitute a part of the substrate entrance to the active site. To investigate the catalytic role of the N-terminus, we removed the residues 1-32 from the enzyme and examined the kinetic, thermodynamic, and structural consequences of the deletion, using the thermophile Pyrococcus furiosus prolyl oligopeptidase. An about threefold decrease in the catalytic activity along with a 20 degrees C reduction in the temperature optimum was observed. The pH-rate profile, the rate-limiting step, and the activation parameters did not change significantly. However, a substantial decrease was observed in the stability of the protein as demonstrated by circular dichroism and differential scanning calorimetry measurements, and by denaturation with guanidinium chloride. It was concluded that the N-terminal segment did not facilitate the substrate binding, independent of the size of the substrate, but contributed principally to the protein stability required for the formation of the proper active site.
Mammalian acylaminoacyl peptidase, a member of the prolyl oligopeptidase family of serine peptidases, is an exopeptidase, which removes acylated amino acid residues from the N terminus of oligopeptides. We have investigated the kinetics and inhibitor binding of the orthologous acylaminoacyl peptidase from the thermophile Aeropyrum pernix K1 (ApAAP). Complex pH-rate profiles were found with charged substrates, indicating a strong electrostatic effect in the surroundings of the active site. Unexpectedly, we have found that oligopeptides can be hydrolysed beyond the N-terminal peptide bond, demonstrating that ApAAP exhibits endopeptidase activity. It was thought that the enzyme is specific for hydrophobic amino acids, in particular phenylalanine, in accord with the non-polar S1 subsite of ApAAP. However, cleavage after an Ala residue contradicted this notion and demonstrated that P1 residues of different nature may bind to the S1 subsite depending on the remaining peptide residues. The crystal structures of the complexes formed between the enzyme and product-like inhibitors identified the oxyanion-binding site unambiguously and demonstrated that the phenylalanine ring of the P1 peptide residue assumes a position different from that established in a previous study, using 4-nitrophenylphosphate. We have found that the substrate-binding site extends beyond the S2 subsite, being capable of binding peptides with a longer N terminus. The S2 subsite displays a non-polar character, which is unique among the enzymes of this family. The S3 site was identified as a hydrophobic region that does not form hydrogen bonds with the inhibitor P3 residue. The enzyme-inhibitor complexes revealed that, upon ligand-binding, the S1 subsite undergoes significant conformational changes, demonstrating the plasticity of the specificity site.
        
Title: Properties of the prolyl oligopeptidase homologue from Pyrococcus furiosus Juhasz T, Szeltner Z, Polgar L Ref: FEBS Letters, 580:3493, 2006 : PubMed
Prolyl oligopeptidase (POP), the paradigm of a serine peptidase family, hydrolyses peptides, but not proteins. The thermophilic POP from Pyrococcus furiosus (Pfu) appeared to be an exception, since it hydrolysed large proteins. Here we demonstrate that the Pfu POP does not display appreciable activity against azocasein. The autolysis observed earlier was an artefact. We have also found that the pH-rate profile is different from that of the mammalian enzyme and the low pK(a) extracted from the curve represents the ionization of the catalytic histidine. We conclude that some oligopeptidases may be true endopeptidases, cleaving at disordered segments of proteins, but with very low efficacy.
        
Title: Flexibility of prolyl oligopeptidase: molecular dynamics and molecular framework analysis of the potential substrate pathways Fuxreiter M, Magyar C, Juhasz T, Szeltner Z, Polgar L, Simon I Ref: Proteins, 60:504, 2005 : PubMed
The flexibility of prolyl oligopeptidase has been investigated using molecular dynamics (MD) and molecular framework approaches to delineate the route of the substrate to the active site. The selectivity of the enzyme is mediated by a seven-bladed beta-propeller that in the crystal structure does not indicate the possible passage for the substrate to the catalytic center. Its open topology however, could allow the blades to move apart and let the substrate into the large central cavity. Flexibility analysis of prolyl oligopeptidase structure using the FIRST (Floppy Inclusion and Rigid Substructure Topology) approach and the atomic fluctuations derived from MD simulations demonstrated the rigidity of the propeller domain, which does not permit the substrate to approach the active site through this domain. Instead, a smaller tunnel at the inter-domain region comprising the highly flexible N-terminal segment of the peptidase domain and a facing hydrophilic loop from the propeller (residues 192-205) was identified by cross-correlation analysis and essential dynamics as the only potential pathway for the substrate. The functional importance of the flexible loop has been also verified by kinetic analysis of the enzyme with a split loop. Catalytic effect of engineered disulfide bridges was rationalized by characterizing the concerted motions of the two domains.
        
Title: Unclosed beta-propellers display stable structures: implications for substrate access to the active site of prolyl oligopeptidase Juhasz T, Szeltner Z, Fulop V, Polgar L Ref: Journal of Molecular Biology, 346:907, 2005 : PubMed
Prolyl oligopeptidase is implicated in the metabolism of neuropeptides and is involved in amnesia and depression. It contains a peptidase and an unusual beta-propeller domain that excludes large peptides and proteins from the active site. The propeller consists of seven blades not closed by a "Velcro" between the first and last blades. The propeller domain was expressed as a stable, soluble protein, P(7). Its conformational identity with that of the native propeller was verified by circular dichroism and digestion with trypsin. Differential scanning calorimetry, kinetic denaturation with urea and equilibrium denaturation with guanidinium chloride have shown that the propeller is more stable than the parent prolyl oligopeptidase. The deletion of the seventh blade of P(7) led to a stable structure, a six-bladed propeller, P(6), which immediately dimerized, in contrast with the monomeric P(7). Addition of an 11 amino acid residue extension to the C terminus of P(6) also produced a dimer, whereas the P(6) labelled with a His-tag at the N terminus displayed a monomer structure. The stability of P(6) and its variants was lower than that of P(7). The denatured propellers refolded readily. This study shows that the unclosed P(7) is a stable structure, and suggests that an opening between the peptidase and the propeller domains is more important for the substrate entry than is the putative opening between the first and seventh blades. Our results suggest that the propellers are simple, versatile structures, which can be prepared artificially.
        
Title: The PREPL A protein, a new member of the prolyl oligopeptidase family, lacking catalytic activity Szeltner Z, Alshafee I, Juhasz T, Parvari R, Polgar L Ref: Cell Mol Life Sciences, 62:2376, 2005 : PubMed
The PREPL (previously called KIAA0436) gene encodes a putative serine peptidase from the prolyl oligopeptidase family. A chromosomal deletion involving the PREPL gene leads to a severe syndrome with multiple symptoms. Homology with oligopeptidase B suggested that the enzyme cleaves after an arginine or lysine residue. Several PREPL splice variants have been identified, and a 638-residue variant (PREPL A) was expressed in Escherichia coli and purified. Its secondary structure was similar to that of oligopeptidase B, but differential-scanning calorimetry indicated a higher conformational stability. Dimerization may account for the enhanced stability. Unexpectedly, the PREPL A protein did not cleave peptide substrates containing a P1 basic residue, but did slowly hydrolyse an activated ester substrate, and reacted with diisopropyl fluorophosphate. These results indicated that the catalytic serine is a reactive residue. However, the negligible hydrolytic activity suggests that the function of PREPL A is different from that of the other members of the prolyl oligopeptidase family.
        
Title: Crystallization and preliminary crystallographic analysis of porcine acylaminoacyl peptidase Wright H, Kiss AL, Szeltner Z, Polgar L, Fulop V Ref: Acta Crystallographica Sect F Struct Biol Cryst Commun, 61:942, 2005 : PubMed
Acylaminoacyl peptidase (also known as acylamino-acid-releasing enzyme or acylpeptide hydrolase; EC 3.4.19.1) is an unusual member of the prolyl oligopeptidase family catalysing the hydrolysis of an N-acylated peptide to an acylamino acid and a peptide with a free N-terminus. Acylaminoacyl peptidase purified from porcine liver has been crystallized in mother liquor containing 0.1 M Tris-HCl pH 7.0, 10%(w/v) polyethylene glycol 8000, 50 mM MgCl2 and 1%(w/v) CHAPS using the hanging-drop vapour-diffusion technique. A full data set to 3.4 A resolution was collected at ESRF beamline ID14-4 and space group C222 was assigned, with unit-cell parameters a = 84.8, b = 421.1, c = 212.0 A and four molecules in the asymmetric unit.
        
Title: Concerted structural changes in the peptidase and the propeller domains of prolyl oligopeptidase are required for substrate binding Szeltner Z, Rea D, Juhasz T, Renner V, Fulop V, Polgar L Ref: Journal of Molecular Biology, 340:627, 2004 : PubMed
Prolyl oligopeptidase contains a peptidase domain and its catalytic triad is covered by the central tunnel of a seven-bladed beta-propeller. This domain makes the enzyme an oligopeptidase by excluding large structured peptides from the active site. The apparently rigid crystal structure does not explain how the substrate can approach the catalytic groups. Two possibilities of substrate access were investigated: either blades 1 and 7 of the propeller domain move apart, or the peptidase and/or propeller domains move to create an entry site at the domain interface. Engineering disulfide bridges to the expected oscillating structures prevented such movements, which destroyed the catalytic activity and precluded substrate binding. This indicated that concerted movements of the propeller and the peptidase domains are essential for the enzyme action.
        
Title: Electrostatic environment at the active site of prolyl oligopeptidase is highly influential during substrate binding Szeltner Z, Rea D, Renner V, Juliano L, Fulop V, Polgar L Ref: Journal of Biological Chemistry, 278:48786, 2003 : PubMed
The positive electrostatic environment of the active site of prolyl oligopeptidase was investigated by using substrates with glutamic acid at positions P2, P3, P4, and P5, respectively. The different substrates gave various pH rate profiles. The pKa values extracted from the curves are apparent parameters, presumably affected by the nearby charged residues, and do not reflect the ionization of a simple catalytic histidine as found in the classic serine peptidases like chymotrypsin and subtilisin. The temperature dependence of kcat/Km did not produce linear Arrhenius plots, indicating different changes in the individual rate constants with the increase in temperature. This rendered it possible to calculate these constants, i.e. the formation (k1) and decomposition (k-1) of the enzyme-substrate complex and the acylation constant (k2), as well as the corresponding activation energies. The results have revealed the relationship between the complex Michaelis parameters and the individual rate constants. Structure determination of the enzyme-substrate complexes has shown that the different substrates display a uniform binding mode. None of the glutamic acids interacts with a charged group. We conclude that the specific rate constant is controlled by k1 rather than k2 and that the charged residues from the substrate and the enzyme can markedly affect the formation but not the structure of the enzyme-substrate complexes.
        
Title: Electrostatic effects and binding determinants in the catalysis of prolyl oligopeptidase. Site specific mutagenesis at the oxyanion binding site Szeltner Z, Rea D, Renner V, Fulop V, Polgar L Ref: Journal of Biological Chemistry, 277:42613, 2002 : PubMed
Prolyl oligopeptidase, a member of a new family of serine peptidases, plays an important role in memory disorders. Earlier x-ray crystallographic investigations indicated that stabilization of the tetrahedral transition state of the reaction involved hydrogen bond formation between the oxyanion of the tetrahedral intermediate and the OH group of Tyr(473). The contribution of the OH group was tested with the Y473F variant using various substrates. The charged succinyl-Gly-Pro-4-nitroanilide was hydrolyzed with a much lower k(cat)/K(m) compared with the neutral benzyloxycarbonyl-G1y-Pro-2-naphthylamide, although the binding modes of the two substrates were similar, as shown by x-ray crystallography. This suggested that electrostatic interactions between Arg(643) and the succinyl group competed with the productive binding mechanism. Unlike most enzyme reactions, catalysis by the wild-type enzyme exhibited positive activation entropy. In contrast, the activation entropy for the Y473F variant was negative, suggesting that the tyrosine OH group is involved in stabilizing both the transition state and the water shell at the active site. Importantly, Tyr(473) is also implicated in the formation of the enzyme-substrate complex. The nonlinear Arrhenius plot suggested a greater significance of the oxyanion binding site at physiological temperature. The results indicated that Tyr(473) was more needed at high pH, at high temperature, and with charged substrates exhibiting "internally competitive inhibition.
Prolyl oligopeptidase, a serine peptidase unrelated to trypsin and subtilisin, is implicated in memory disorders and is an important target of drug design. The catalytic competence of the Asp(641) residue of the catalytic triad (Ser(554), Asp(641), His(680)) was studied using the D641N and D641A variants of the enzyme. Both variants displayed 3 orders of magnitude reduction in k(cat)/K(m) for benzyloxycarbonyl-Gly-Pro-2-naphthylamide. Using an octapeptide substrate, the decrease was 6 orders of magnitude, whereas with Z-Gly-Pro-4-nitrophenyl ester there was virtually no change in k(cat)/K(m). This indicates that the contribution of Asp(641) is very much dependent on the substrate-leaving group, which was not the case for the classic serine peptidase, trypsin. The rate constant for benzyloxycarbonyl-Gly-Pro-thiobenzylester conformed to this series as demonstrated by a method designed for monitoring the hydrolysis of thiolesters in the presence of thiol groups. Alkylation of His(680) with Z-Gly-Pro-CH(2)Cl was concluded with similar rate constants for wild-type and D641A variant. However, kinetic measurements with Z-Gly-Pro-OH, a product-like inhibitor, indicated that the His(680) is not accessible in the enzyme variants. Crystal structure determination of these mutants revealed subtle perturbations related to the catalytic activity. Many of these observations show differences in the catalysis between trypsin and prolyl oligopeptidase.
        
Title: Structures of prolyl oligopeptidase substrate/inhibitor complexes. Use of inhibitor binding for titration of the catalytic histidine residue Fulop V, Szeltner Z, Renner V, Polgar L Ref: Journal of Biological Chemistry, 276:1262, 2001 : PubMed
Structure determination of the inactive S554A variant of prolyl oligopeptidase complexed with an octapeptide has shown that substrate binding is restricted to the P4-P2' region. In addition, it has revealed a hydrogen bond network of potential catalytic importance not detected in other serine peptidases. This involves a unique intramolecular hydrogen bond between the P1' amide and P2 carbonyl groups and another between the P2' amide and Nepsilon2 of the catalytic histidine 680 residue. It is argued that both hydrogen bonds promote proton transfer from the imidazolium ion to the leaving group. Another complex formed with the product-like inhibitor benzyloxycarbonyl-glycyl-proline, indicating that the carboxyl group of the inhibitor forms a hydrogen bond with the Nepsilon2 of His(680). Because a protonated histidine makes a stronger interaction with the carboxyl group, it offers a possibility of the determination of the real pK(a) of the catalytic histidine residue. This was found to be 6.25, lower than that of the well studied serine proteases. The new titration method gave a single pK(a) for prolyl oligopeptidase, whose reaction exhibited a complex pH dependence for k(cat)/K(m), and indicated that the observed pK(a) values are apparent. The procedure presented may be applicable for other serine peptidases.
        
Title: Catalysis of serine oligopeptidases is controlled by a gating filter mechanism Fulop V, Szeltner Z, Polgar L Ref: EMBO Rep, 1:277, 2000 : PubMed
Proteases have a variety of strategies for selecting substrates in order to prevent uncontrolled protein degradation. A recent crystal structure determination of prolyl oligopeptidase has suggested a way for substrate selection involving an unclosed seven-bladed beta-propeller domain. We have engineered a disulfide bond between the first and seventh blades of the propeller, which resulted in the loss of enzymatic activity. These results provided direct evidence for a novel strategy of regulation in which oscillating propeller blades act as a gating filter during catalysis, letting small peptide substrates into the active site while excluding large proteins to prevent accidental proteolysis.
        
Title: The noncatalytic beta-propeller domain of prolyl oligopeptidase enhances the catalytic capability of the peptidase domain Szeltner Z, Renner V, Polgar L Ref: Journal of Biological Chemistry, 275:15000, 2000 : PubMed
Prolyl oligopeptidase, which is involved in memory disorders, is a member of a new family of serine peptidases. In addition to the peptidase domain, the enzyme contains a beta-propeller, which excludes large peptides from the active site. The enzyme is inhibited with thiol reagents, possibly by reacting with Cys-255 located close to the substrate binding site. This assumption was tested with the Cys-255 --> Thr, Cys-255 --> Ala, and Cys-255 --> Ser variants of prolyl oligopeptidase. In contrast to the wild type enzyme, the Cys-255 --> Thr variant was not inhibited with N-ethylmaleimide, indicating that Cys-255, of the 16 free cysteine residues, exclusively accounts for the enzyme inhibition. Unlike the wild type enzyme that showed a doubly bell-shaped pH rate profile, the modified enzyme displayed a single bell-shaped pH dependence with benzyloxycarbonyl-Gly-Pro-naphthylamide. It was the high pH form of the enzyme that virtually disappeared with all three enzyme variants. A substantial reduction was also observed in k(cat)/K(m) for the aminobenzoyl-Ser-Pro-Phe(NO(2))-Ala-OH substrate. The high pK(a) (9.77) of Cys-255 determined by titration with N-ethylmaleimide excluded the possibility that ionization of the thiol group was responsible for generation of the two active enzyme forms. The impaired activity of the enzyme variants could be rationalized in terms of weaker binding, which manifests itself in high K(m) for substrates and high K(i) for inhibitors, like benzyloxycarbonyl-Gly-Pro-OH and aminobenzoyl-Ser-d-Pro-Phe(NO(2))-Ala-OH. It was concluded that, besides selecting substrates by size, the beta-propeller domain containing Cys-255 remarkably contributed to catalysis of the peptidase domain.