Thompson Charles MThe University of Montana, Department of Chemistry, Missoula, Montana 59812-1006 USAPhone : 406-243-4643 Fax : 406-243-4227 Send E-Mail to Thompson Charles M
Synthesis of the acetylcholinesterase inhibitor paraoxon (POX) as a carbon-11 positron emission tomography tracer ([(11)C]POX) and profiling in live rats is reported. Naive rats intravenously injected with [(11)C]POX showed a rapid decrease in parent tracer to ~ 1% with an increase in radiolabeled serum proteins to 87%, and red blood cells (RBCs) to 9%. Protein and RBC leveled over 60 min reflecting covalent modification of proteins by [(11)C]POX. Ex vivo biodistribution and imaging profiles in naive rats had the highest radioactivity levels in lung followed by heart and kidney, and brain and liver the lowest. Brain radioactivity levels were low but observed immediately after injection, and persisted over the 60 min experiment. This showed for the first-time that even low POX exposures (~200 ng of tracer) can rapidly enter brain. Rats given an LD(50) dose of non-radioactive paraoxon at the LD(50) 20 or 60 min prior to [(11)C]POX tracer revealed protein pools were blocked. Blood radioactivity at 20 min were markedly lower than naive levels due to rapid protein modification by non-radioactive POX, however by 60 min, the blood radioactivity returned to near naive levels. Live rat tissue imaging-derived radioactivity values were 10-37% of naive levels in non-radioactive POX pretreated rats at 20 min, but by 60 min the AUC values had recovered to 25-80% of naive. The live rat imaging supported blockade by non-radioactive POX pretreatment at 20 min and recovery of proteins by 60-min. Significance Statement Paraoxon (POX) is an organophosphorus (OP) compound and a powerful prototype and substitute for OP chemical warfare agents (CWAs) such as sarin, VX etc. To study the distribution and penetration of POX into the CNS and other tissues, a positron emission tomography (PET) tracer analog, [(11)C]POX, was prepared. Blood and tissue radioactivity levels in live rats demonstrated immediate penetration into the CNS and persistent radioactivity levels in tissues indicative of covalent target modification.
Organophosphorus esters (OPs) were originally developed as pesticides but were repurposed as easily manufactured, inexpensive, and highly toxic chemical warfare agents. Acute OP toxicity is primarily due to inhibition of acetylcholinesterase (AChE), an enzyme in the central and peripheral nervous system. OP inhibition of AChE can be reversed using oxime reactivators but many show poor CNS penetration, indicating a need for new clinically viable reactivators. However, challenges exist on how to best measure restored AChE activity in vivo and assess the reactivating agent efficacy. This work reports the development of molecular imaging tools using radiolabeled OP analog tracers that are less toxic to handle in the laboratory, yet inhibit AChE in a similar fashion to the actual OPs. Carbon-11 and fluorine-18 radiolabeled analog tracers of VX and sarin OP agents were prepared. Following intravenous injection in normal Sprague-Dawley rats (n = 3-4/tracer), the tracers were evaluated and compared using noninvasive microPET/CT imaging, biodistribution assay, and arterial blood analyses. All showed rapid uptake and stable retention in brain, heart, liver, and kidney tissues determined by imaging and biodistribution. Lung uptake of the sarin analog tracers was elevated, 2-fold and 4-fold higher uptake at 5 and 30 min, respectively, compared to that for the VX analog tracers. All tracers rapidly bound to red blood cells (RBC) and blood proteins as measured in the biodistribution and arterial blood samples. Analysis of the plasma soluble activity (nonprotein/cell bound activity) showed only 1-6% parent tracer and 88-95% of the activity in the combined solid fractions (RBC and protein bound) as early as 0.5 min post injection. Multivariate analysis of tracer production yield, molar activity, brain uptake, brain area under the curve over 0-15 min, and the amount of parent tracer in the plasma at 5 min revealed the [(18)F]VX analog tracer had the most favorable values for each metric. This tracer was considered the more optimal tracer relative to the other tracers studied and suitable for future in vivo OP exposure and reactivation studies.
Oxime antidotes regenerate organophosphate-inhibited acetylcholinesterase (AChE). Although they share a common mechanism of AChE reactivation, the rate and amount of oxime that enters the brain are critical to the efficacy, a process linked to the oxime structure and charge. Using a platform based on the organophosphate [(18) F]-VXS as a positron emission tomography tracer for active AChE, the in vivo distribution of [(18) F]-VXS was evaluated after an LD50 dose (250 mug/kg) of the organophosphate paraoxon (POX) and following oximes as antidotes. Rats given [(18) F]-VXS tracer alone had significantly higher radioactivity (two- to threefold) in the heart and lung than rats given LD50 POX at 20 or 60 min prior to [(18) F]-VXS. When rats were given LD50 POX followed by 2-PAM (cationic), RS194b (ionizable), or monoisonitrosoacetone (MINA) (neutral), central nervous system (CNS) radioactivity returned to levels at or above untreated naive rats (no POX), whereas CNS radioactivity did not increase in rats given the dication oximes HI-6 or MMB-4. MINA showed a significant, pairwise increase in CNS brain radioactivity compared with POX-treated rats. This new in vivo dynamic platform using [(18) F]-VXS tracer measures and quantifies peripheral and CNS relative changes in AChE availability after POX exposure and is suitable for comparing oxime delivery and AChE reactivation in rats.
        
Title: Inhibition of Acetylcholinesterases by Stereoisomeric Organophosphorus Compounds Containing Both Thioester and p-Nitrophenyl Leaving Groups Talley TT, Chao CK, Berkman CE, Richardson RJ, Thompson CM Ref: Chemical Research in Toxicology, 33:2455, 2020 : PubMed
Studies with acetylcholinesterase (AChE) inhibited by organophosphorus (OP) compounds with two chiral centers can serve as models or surrogates for understanding the rate, orientation, and postinhibitory mechanisms by the nerve agent soman that possesses dual phosphorus and carbon chiral centers. In the current approach, stereoisomers of O-methyl, [S-(succinic acid, diethyl ester), O-(4-nitrophenyl) phosphorothiolate (MSNPs) were synthesized, and the inhibition, reactivation, and aging mechanisms were studied with electric eel AChE (eeAChE) and recombinant mouse brain AChE (rmAChE). The MSNP R(P)R(C) isomer was the strongest inhibitor of both eeAChE and rmAChE at 8- and 24-fold greater potency, respectively, than the weakest S(P)S(C) isomer. eeAChE inhibited by the R(P)R(C)- or R(P)S(C)-MSNP isomer underwent spontaneous reactivation -10- to 20-fold faster than the enzyme inhibited by S(P)R(C)- and S(P)S(C)-MSNP, and only 4% spontaneous reactivation was observed from the S(P)R(C)-eeAChE adduct. Using 2-pyridine aldoxime methiodide (2-PAM) or trimedoxime (TMB-4), eeAChE inhibited by R(P)R(C)- or S(P)R(C)-MSNP reactivated up to 90% and 3- to 4-fold faster than eeAChE inhibited by the R(P)S(C)- or S(P)S(C)-MSNP isomer. Spontaneous reactivation rates for rmAChE were 1.5- to 10-fold higher following inhibition by R(P)S(C)- and S(P)S(C)-MSNPs than inhibition by either R(C) isomer, a trend opposite to that found for eeAChE. Oxime reactivation of rmAChE following inhibition by R(P)R(C)- and S(P)R(C)-MSNPs was 2.5- to 5-fold faster than inhibition by R(P)S(C)- or S(P)S(C)-MSNPs. Due to structural similarities, MSNPs that phosphylate AChE with the loss of the p-nitrophenoxy (PNP) group form identical, nonreactivatable adducts to those formed from S(P)-isomalathion; however, all the MSNP isomers inhibited AChE to form adducts that reactivated. Thus, MSNPs inactivate AChE via the ejection of either PNP or thiosuccinyl groups to form a combination of reactivatable and nonreactivatable adducts, and this differs from the mechanism of AChE inhibition by isomalathion.
        
Title: Positron emission tomography studies of organophosphate chemical threats and oxime countermeasures Thompson CM, Gerdes JM, VanBrocklin HF Ref: Neurobiol Dis, 133:104455, 2020 : PubMed
There is a unique in vivo interplay involving the mechanism of inactivation of acetylcholinesterase (AChE) by toxic organophosphorus (OP) compounds and the restoration of AChE activity by oxime antidotes. OP compounds form covalent adducts to this critical enzyme target and oximes are introduced to directly displace the OP from AChE. For the most part, the in vivo inactivation of AChE leading to neurotoxicity and antidote-based therapeutic reversal of this mechanism are well understood, however, these molecular-level events have not been evaluated by dynamic imaging in living systems at millimeter resolution. A deeper understanding of these critically, time-dependent mechanisms is needed to develop new countermeasures. To address this void and to help accelerate the development of new countermeasures, positron-emission tomography (PET) has been investigated as a unique opportunity to create platform technologies to directly examine the interdependent toxicokinetic/pharmacokinetic and toxicodynamic/pharmacodynamic features of OPs and oximes in real time within live animals. This review will cover two first-in-class PET tracers representing an OP and an oxime antidote, including their preparation, requisite pharmacologic investigations, mechanistic interpretations, biodistribution and imaging.
        
Title: Comparison of the reactivation rates of acetylcholinesterase modified by structurally different organophosphates using novel pyridinium oximes Bharate SB, Chao CK, Thompson CM Ref: Environ Toxicol Pharmacol, 71:103218, 2019 : PubMed
A novel panel of oximes were synthesized, which have displayed varying degree of reactivation ability towards different organophosphorus (OP) modified cholinesterases. In the present article, we report a comparative reactivation profile of a series of quaternary pyridinium-oximes for electric eel acetylcholinesterase (EEAChE) inhibited by the organophosphorus (OP) inhibitors methyl paraoxon (MePOX), ethyl paraoxon (POX; paraoxon) and diisopropyl fluorophosphate (DFP) that are distinguishable as dimethoxyphosphoryl, diethoxyphosphoryl and diisopropoxyphosphoryl AChE-OP-adducts. Most of the 59-oximes tested led to faster and more extensive reactivation of MePOX- and POX-inhibited EEAChE as compared to DFP-modified EEAChE. All were effective reactivators of three OP-modified EEAChE conjugates showing 18-21% reactivation for DFP-inhibited AChE and >/=45% reactivation for MePOX- and POX-inhibited EEAChE. Oximes 7 and 8 showed kr values better than pralidoxime (1) for DFP-inhibited EEAChE. Reactivation rates determined at different inhibition times showed no significant change in kr values during 0-90min incubation with three OPs. However, a 34-72% decrease in kr for MePOX and POX and > 95% decrease in kr for DFP-inhibited EEAChE was observed after 24h of OP-exposure (aging).
        
Title: Divergent synthesis of organophosphate [(11)C]VX- and [(11)C]Sarin-surrogates from a common set of starting materials Hayes TR, Blecha JE, Thompson CM, Gerdes JM, VanBrocklin HF Ref: Appl Radiat Isot, 151:182, 2019 : PubMed
Radiolabeled 1-[(11)C]ethyl, 4-nitrophenyl methylphosphonate (VX surrogate) and 2-[(11)C]-propanyl, 4-nitrophenyl methylphosphonate (sarin surrogate) were developed as organophosphate (OP) tracers. The [(11)C]ethyl- and [(11)C]isopropyl-iodide radiolabeled synthons were obtained by temperature controlled, in loop reactions of [(11)C]CO2 with MeMgBr followed by reduction with LiAlH4, then reaction with HI. Distillation of the [(11)C]alkyl iodides into a solution of hydrogen (4-nitrophenyl)methylphosphonate and cesium carbonate afforded the desired tracers in >95% radiochemical purity, yields from [(11)C]CO2 of 1-3% and 1.7-15.1 GBq/mmol molar activities.
        
Title: The inhibition, reactivation and mechanism of VX-, sarin-, fluoro-VX and fluoro-sarin surrogates following their interaction with HuAChE and HuBuChE Chao CK, Balasubramanian N, Gerdes JM, Thompson CM Ref: Chemico-Biological Interactions, 291:220, 2018 : PubMed
In this study, the mechanisms of HuAChE and HuBChE inhibition by Me-P(O) (OPNP) (OR) [PNP = p-nitrophenyl; R = CH(2)CH(3), CH(2)CH(2)F, OCH(CH(3))(2), OCH(CH(3)) (CH(2)F)] representing surrogates and fluoro-surrogates of VX and sarin were studied by in vitro kinetics and mass spectrometry. The in vitro measures showed that the VX- and fluoro-VX surrogates were relatively strong inhibitors of HuAChE and HuBChE (k(i) - 10(5)-10(6) M(-1)min(-1)) and underwent spontaneous and 2-PAM-mediated reactivation within 30 min. The sarin surrogates were weaker inhibitors of HuAChE and HuBChE (k(i) - 10(4)-10(5) M(-1)min(-1)), and in general did not undergo spontaneous reactivation, although HuAChE adducts were partially reactivatable at 18 h using 2-PAM. The mechanism of HuAChE and HuBChE inhibition by the surrogates was determined by Q-TOF and MALDI-TOF mass spectral analyses. The surrogate-adducted proteins were trypsin digested and the active site-containing peptide bearing the OP-modified serine identified by Q-TOF as triply- and quadruply-charged ions representing the respective increase in mass of the attached OP moiety. Correspondingly, monoisotopic ions of the tryptic peptides representing the mass increase of the OP-adducted peptide was identified by MALDI-TOF. The mass spectrometry analyses validated the identity of the OP moiety attached to HuAChE or HuBChE as MeP(O) (OR)-O-serine peptides (loss of the PNP leaving group) via mechanisms consistent with those found with chemical warfare agents. MALDI-TOF MS analyses of the VX-modified peptides versus time showed a steady reduction in adduct versus parent peptide (reactivation), whereas the sarin-surrogate-modified peptides remained largely intact over the course of the experiment (24 h). Overall, the presence of a fluorine atom on the surrogate modestly altered the rate constants of inhibition and reactivation, however, the mechanism of inhibition (ejection of PNP group) did not change.
        
Title: Radiosynthesis of O-(1-[(18) F]fluoropropan-2-yl)-O-(4-nitrophenyl)methylphosphonate: A novel PET tracer surrogate of sarin Hayes TR, Thompson CM, Blecha JE, Gerdes JM, VanBrocklin HF Ref: J Labelled Comp Radiopharm, 61:1089, 2018 : PubMed
O-(1-Fluoropropan-2-yl)-O-(4-nitrophenyl) methylphosphonate is a reactive organophosphate ester (OP) developed as a surrogate of the chemical warfare agent sarin that forms a similar covalent adduct at the active site serine of acetylcholinesterase. The radiolabeled O-(1-[(18) F]fluoropropan-2-yl)-O-(4-nitrophenyl) methylphosphonate ([(18) F] fluorosarin surrogate) has not been previously prepared. In this paper, we report the first radiosynthesis of this tracer from the reaction of bis-(4-nitrophenyl) methylphosphonate with 1-[(18) F]fluoro-2-propanol in the presence of DBU. The 1-[(18) F]fluoro-2-propanol was prepared by reaction of propylene sulfite with Kryptofix 2.2.2 and [(18) F] fluoride ion. The desired tracer O-(1-[(18) F]fluoropropan-2-yl)-O-(4-nitrophenyl) methylphosphonate was obtained in a >98% radiochemical purity with a 2.4% +/- 0.6% yield (n = 5, 65 minutes from start of synthesis) based on starting [(18) F] fluoride ion and a molar activity of 49.9 GBq/mumol (1.349 +/- 0.329 Ci/mumol, n = 3). This new facile radiosynthesis routinely affords sufficient quantities of [(18) F] fluorosarin surrogate in high radiochemical purity, which will further enable the tracer development as a novel radiolabeled OP acetylcholinesterase inhibitor for assessment of OP modes of action with PET imaging in vivo.
2-Pyridinealdoxime methiodide (2-PAM) is a widely used antidote for the treatment of organophosphorus (OP) exposure that reactivates the target protein acetylcholinesterase. Carbon-11 2-PAM was prepared to more fully understand the in vivo mode of action, distribution, and dynamic qualities of this important countermeasure. Alkylation of 2-pyridinealdoxime with [(11)C]CH3I provided the first-in-class [(11)C]2-PAM tracer in 3.5% decay corrected radiochemical yield from [(11)C]CH3I, >99% radiochemical purity, and 4831 Ci/mmol molar activity. [(11)C]2-PAM tracer distribution was evaluated by ex vivo biodistribution and in vivo dynamic positron emission tomography (PET) imaging in naive (OP exposure deficient) rats. Tracer alone and tracer coinjected with a body mass-scaled human therapeutic dose of 30 mg/kg nonradioactive 2-PAM demonstrated statistically similar tissue and blood distribution profiles with the greatest uptake in kidney and significantly lower levels in liver, heart, and lung with lesser amounts in blood and brain. The imaging and biodistribution data show that radioactivity uptake in brain and peripheral organs is rapid and characterized by differential tissue radioactivity washout profiles. Analysis of arterial blood samples taken 5 min after injection showed approximately 82% parent [(11)C]2-PAM tracer. The imaging and biodistribution data are now established, enabling future comparisons to outcomes acquired in OP intoxicated rodent models.
        
Title: An improved radiosynthesis of O-(2-[18 F]fluoroethyl)-O-(p-nitrophenyl)methylphosphonate: A first-in-class cholinesterase PET tracer Neumann KD, Thompson CM, Blecha JE, Gerdes JM, VanBrocklin HF Ref: J Labelled Comp Radiopharm, 60:337, 2017 : PubMed
O-(2-Fluoroethyl)-O-(p-nitrophenyl) methylphosphonate 1 is an organophosphate cholinesterase inhibitor that creates a phosphonyl-serine covalent adduct at the enzyme active site blocking cholinesterase activity in vivo. The corresponding radiolabeled O-(2-[18 F]fluoroethyl)-O-(p-nitrophenyl) methylphosphonate, [18 F]1, has been previously prepared and found to be an excellent positron emission tomography imaging tracer for assessment of cholinesterases in live brain, peripheral tissues, and blood. However, the previously reported [18 F]1 tracer synthesis was slow even with microwave acceleration, required high-performance liquid chromatography separation of the tracer from impurities, and gave less optimal radiochemical yields. In this paper, we report a new synthetic approach to circumvent these shortcomings that is reliant on the facile reactivity of bis-(O,O-p-nitrophenyl) methylphosphonate, 2, with 2-fluoroethanol in the presence of DBU. The cold synthesis was successfully translated to provide a more robust radiosynthesis. Using this new strategy, the desired tracer, [18 F]1, was obtained in a non-decay-corrected radiochemical yield of 8 +/- 2% (n = 7) in >99% radiochemical and >95% chemical purity with a specific activity of 3174 +/- 345 Ci/mmol (EOS). This new facile radiosynthesis routinely affords highly pure quantities of [18 F]1, which will further enable tracer development of OP cholinesterase inhibitors and their evaluation in vivo.
        
Title: Novel Organophosphate Ligand O-(2-Fluoroethyl)-O-(p-Nitrophenyl)Methylphosphonate: Synthesis, Hydrolytic Stability and Analysis of the Inhibition and Reactivation of Cholinesterases Chao CK, Ahmed SK, Gerdes JM, Thompson CM Ref: Chemical Research in Toxicology, 29:1810, 2016 : PubMed
The organophosphate O-(2-fluoroethyl)-O-(p-nitrophenyl) methyphosphonate 1 is the first-in-class, fluorine-18 radiolabeled organophosphate inhibitor ([18F]1) of acetylcholinesterase (AChE). In rats, [18F]1 localizes in AChE rich regions of the brain and other tissues where it likely exists as the (CH3)(18FCH2CH2O)P(O)-AChE adduct (ChE-1). Characterization of this adduct would define the inhibition mechanism and subsequent postinhibitory pathways and reactivation rates. To validate this adduct, the stability (hydrolysis) of 1 and ChE-1 reactivation rates were determined. Base hydrolysis of 1 yields p-nitrophenol and (CH3) (FCH2CH2O)P(O)OH with pseudo first order rate constants (kobsd) at pH 7.4 (PBS) of 3.25 x 10-4 min-1 (t1/2 = 35.5 h) at 25 degrees C and 8.70 x 10-4 min-1 (t1/2 = 13.3 h) at 37 degrees C. Compound 1 was a potent inhibitor of human acetylcholinesterase (HuAChE; ki = 7.5 x 105 M-1 min-1), electric eel acetylcholinesterase (EEAChE) (ki = 3.0 x 106 M-1 min-1), and human serum butyrylcholinesterase (HuBChE; 1.95 x 105 M-1 min-1). Spontaneous and oxime-mediated reactivation rates for the (CH3) (FCH2CH2O)P(O)-serine ChE adducts using 2-PAM (10 muM) were (a) HuAChE 8.8 x 10-5 min-1 (t1/2 = 131.2 h) and 2.41 x 10-2 min-1 (t1/2 = 0.48 h), (b) EEAChE 9.32 x 10-3 min-1 (t1/2 = 1.24 h) and 3.33 x 10-2 min-1 (t1/2 = 0.35 h), and (c) HuBChE 1.16 x 10-4 min-1 (t1/2 = 99.6 h) and 4.19 x 10-2 min-1 (t1/2 = 0.27 h). All ChE-1 adducts undergo rapid and near complete restoration of enzyme activity following addition of 2-PAM (30 min), and no aging was observed for either reactivation process. The fast reactivation rates and absence of aging of ChE-1 adducts are explained on the basis of the electron-withdrawing fluorine group that favors the nucleophilic reactivation processes but disfavors cation-based dealkylation aging mechanisms. Therefore, the likely fate of radiolabeled compound 1 in vivo is the formation of (CH3)(FCH2CH2O)P(O)-serine adducts and monoacid (CH3)(FCH2CH2O)P(O)OH from hydrolysis and reactivation.
Radiosynthesis of a fluorine-18 labeled organophosphate (OP) inhibitor of acetylcholinesterase (AChE) and subsequent positron emission tomography (PET) imaging using the tracer in the rat central nervous system are reported. The tracer structure, which contains a novel beta-fluoroethoxy phosphoester moiety, was designed as an insecticide-chemical nerve agent hybrid to optimize handling and the desired target reactivity. Radiosynthesis of the beta-fluoroethoxy tracer is described that utilizes a [(18)F]prosthetic group coupling approach. The imaging utility of the [(18)F]tracer is demonstrated in vivo within rats by the evaluation of its brain penetration and cerebral distribution qualities in the absence and presence of a challenge agent. The tracer effectively penetrates brain and localizes to cerebral regions known to correlate with the expression of the AChE target. Brain pharmacokinetic properties of the tracer are consistent with the formation of an OP-adducted acetylcholinesterase containing the fluoroethoxy tracer group. Based on the initial favorable in vivo qualities found in rat, additional [(18)F]tracer studies are ongoing to exploit the technology to dynamically probe organophosphate mechanisms of action in mammalian live tissues.
Activated organophosphate (OP) insecticides and chemical agents inhibit acetylcholinesterase (AChE) to form OP-AChE adducts. Whereas the structure of the OP correlates with the rate of inhibition, the structure of the OP-AChE adduct influences the rate at which post-inhibitory reactivation or aging phenomena occurs. In this report, we prepared a panel of beta-substituted ethoxy and gamma-substituted propoxy phosphonoesters of the type p-NO(2)PhO-P(X)(R)[(O(CH(2))(n)Z] (R=Me, Et; X=O, S; n=2, 3; Z=halogen, OTs) and examined the inhibition of three AChEs by select structures in the panel. The beta-fluoroethoxy methylphosphonate analog (R=Me, Z=F, n=2) was the most potent anti-AChE compound comparable (ki approximately 6 x 10(6)M(-1)min(-1)) to paraoxon against EEAChE. Analogs with Z=Br, I, or OTs were weak inhibitors of the AChEs, and methyl phosphonates (R=Me) were more potent than the corresponding ethyl phosphonates (R=Et). As expected, analogs with a thionate linkage (PS) were poor inhibitors of the AChEs.
        
Title: Bisquaternary pyridinium oximes: Comparison of in vitro reactivation potency of compounds bearing aliphatic linkers and heteroaromatic linkers for paraoxon-inhibited electric eel and recombinant human acetylcholinesterase Bharate SB, Guo L, Reeves TE, Cerasoli DM, Thompson CM Ref: Bioorganic & Medicinal Chemistry, 18:787, 2010 : PubMed
Oxime reactivators are the drugs of choice for the post-treatment of OP (organophosphorus) intoxication and used widely for mechanistic and kinetic studies of OP-inhibited cholinesterases. The purpose of the present study was to evaluate new oxime compounds to reactivate acetylcholinesterase (AChE) inhibited by the OP paraoxon. Several new bisquaternary pyridinium oximes with heterocyclic linkers along with some known bisquaternary pyridinium oximes bearing aliphatic linkers were synthesized and evaluated for their in vitro reactivation potency against paraoxon-inhibited electric eel acetylcholinesterase (EeAChE) and recombinant human acetylcholinesterase (rHuAChE). Results herein indicate that most of the compounds are better reactivators of EeAChE than of rHuAChE. The reactivation potency of two different classes of compounds with varying linker chains was compared and observed that the structure of the connecting chain is an important factor for the activity of the reactivators. At a higher concentration (10(-3)M), compounds bearing aliphatic linker showed better reactivation than compounds with heterocyclic linkers. Interestingly, oximes with a heterocyclic linker inhibited AChE at higher concentration (10(-3)M), whereas their ability to reactivate was increased at lower concentrations (10(-4)M and 10(-5)M). Compounds bearing either a thiophene linker 26, 46 or a furan linker 31 showed 59%, 49% and 52% reactivation of EeAChE, respectively, at 10(-5)M. These compounds showed 14%, 6% and 15% reactivation of rHuAChE at 10(-4)M. Amongst newly synthesized analogs with heterocyclic linkers (26-35 and 45-46), compound 31, bearing furan linker chain, was found to be the most effective reactivator with a k(r) 0.042min(-1), which is better than obidoxime (3) for paraoxon-inhibited EeAChE. Compound 31 showed a k(r) 0.0041min(-1) that is near equal to pralidoxime (1) for paraoxon-inhibited rHuAChE.
        
Title: Inhibition of acetylcholinesterase by chromophore-linked fluorophosphonates Guo L, Suarez AI, Braden MR, Gerdes JM, Thompson CM Ref: Bioorganic & Medicinal Chemistry Lett, 20:1194, 2010 : PubMed
Fluorophosphonate (FP) head groups were tethered to a variety of chromophores (C) via a triazole group and tested as FPC inhibitors of recombinant mouse (rMoAChE) and electric eel (EEAChE) acetylcholinesterase. The inhibitors showed bimolecular inhibition constants (k(i)) ranging from 0.3 x 10(5)M(-1)min(-1) to 10.4 x 10(5)M(-1)min(-1). When tested against rMoAChE, the dansyl FPC was 12.5-fold more potent than the corresponding inhibitor bearing a Texas Red as chromophore, whereas the Lissamine and dabsyl chromophores led to better anti-EEAChE inhibitors. Most inhibitors were equal or better inhibitors of rMoAChE than EEAChE. 3-Azidopropyl fluorophosphonate, which served as one of the FP head groups, showed excellent inhibitory potency against both AChE's ( congruent with 1 x 10(7)M(-1)min(-1)) indicating, in general, that addition of the chromophore reduced the overall anti-AChE activity. Covalent attachment of the dabsyl-FPC analog to rMoAChE was demonstrated using size exclusion chromatography and spectroscopic analysis, and visualized using molecular modeling.
        
Title: Inactivation of acetylcholinesterase by various fluorophores Guo L, Suarez AI, Thompson CM Ref: J Enzyme Inhib Med Chem, 25:116, 2010 : PubMed
The inhibition of recombinant mouse acetylcholinesterase (rMAChE) and electric eel acetylcholinesterase (EEAChE) by seven, structurally different chromophore-based (dansyl, pyrene, dabsyl, diethylamino- and methoxycoumarin, Lissamine rhodamine B, and Texas Red) propargyl carboxamides or sulfonamides was studied. Diethylaminocoumarin, Lissamine, and Texas Red amides inhibited rMAChE with IC50 values of 1.00 microM, 0.05 microM, and 0.70 microM, respectively. Lissamine and Texas Red amides inhibited EEAChE with IC50 values of 3.57 and 10.4 microM, respectively. The other chromophore amides did not inhibit either AChE. The surprising inhibitory potency of Lissamine was examined in further detail against EEAChE and revealed a mixed-type inhibition with Ki = 11.7 microM (competitive) and Ki' = 24.9 microM (noncompetitive), suggesting that Lissamine binds to free enzyme and enzyme-substrate complex.
        
Title: Paraoxon-induced protein expression changes to SH-SY5Y cells Prins JM, George KM, Thompson CM Ref: Chemical Research in Toxicology, 23:1656, 2010 : PubMed
SH-SY5Y neuroblastoma cells were examined to determine changes in protein expression following exposure to the organophosphate paraoxon (O,O-diethyl-p-nitrophenoxy phosphate). Exposure of SH-SY5Y cells to paraoxon (20 muM) for 48 h showed no significant change in cell viability as established using an MTT assay. Protein expression changes from the paraoxon-treated SH-SY5Y cells were determined using a comparative, subproteome approach by fractionation into cytosolic, membrane, nuclear, and cytoskeletal fractions. The fractionated proteins were separated by 2D-PAGE, identified by MALDI-TOF mass spectrometry, and expression changes determined by densitometry. Over 400 proteins were separated from the four fractions, and 16 proteins were identified with altered expression >/=1.3-fold including heat shock protein 90 (-1.3-fold), heterogeneous nuclear ribonucleoprotein C (+2.8-fold), and H(+) transporting ATP synthase beta chain (-3.1-fold). Western blot analysis conducted on total protein isolates confirmed the expression changes in these three proteins.
        
Title: Organophosphorus pesticides decrease M2 muscarinic receptor function in guinea pig airway nerves via indirect mechanisms Proskocil BJ, Bruun DA, Thompson CM, Fryer AD, Lein PJ Ref: PLoS ONE, 5:e10562, 2010 : PubMed
BACKGROUND: Epidemiological studies link organophosphorus pesticide (OP) exposures to asthma, and we have shown that the OPs chlorpyrifos, diazinon and parathion cause airway hyperreactivity in guinea pigs 24 hr after a single subcutaneous injection. OP-induced airway hyperreactivity involves M2 muscarinic receptor dysfunction on airway nerves independent of acetylcholinesterase (AChE) inhibition, but how OPs inhibit neuronal M2 receptors in airways is not known. In the central nervous system, OPs interact directly with neurons to alter muscarinic receptor function or expression; therefore, in this study we tested whether the OP parathion or its oxon metabolite, paraoxon, might decrease M2 receptor function on peripheral neurons via similar direct mechanisms. METHODOLOGY/PRINCIPAL FINDINGS: Intravenous administration of paraoxon, but not parathion, caused acute frequency-dependent potentiation of vagally-induced bronchoconstriction and increased electrical field stimulation (EFS)-induced contractions in isolated trachea independent of AChE inhibition. However, paraoxon had no effect on vagally-induced bradycardia in intact guinea pigs or EFS-induced contractions in isolated ileum, suggesting mechanisms other than pharmacologic antagonism of M2 receptors. Paraoxon did not alter M2 receptor expression in cultured cells at the mRNA or protein level as determined by quantitative RT-PCR and radio-ligand binding assays, respectively. Additionally, a biotin-labeled fluorophosphonate, which was used as a probe to identify molecular targets phosphorylated by OPs, did not phosphorylate proteins in guinea pig cardiac membranes that were recognized by M2 receptor antibodies. CONCLUSIONS/SIGNIFICANCE: These data indicate that neither direct pharmacologic antagonism nor downregulated expression of M2 receptors contributes to OP inhibition of M2 function in airway nerves, adding to the growing evidence of non-cholinergic mechanisms of OP neurotoxicity.
        
Title: New series of monoquaternary pyridinium oximes: Synthesis and reactivation potency for paraoxon-inhibited electric eel and recombinant human acetylcholinesterase Bharate SB, Guo L, Reeves TE, Cerasoli DM, Thompson CM Ref: Bioorganic & Medicinal Chemistry Lett, 19:5101, 2009 : PubMed
The preparation of a series of monoquaternary pyridinium oximes bearing either a heterocyclic side chain or a functionalized aliphatic side chain and the corresponding in vitro evaluation for reactivation of paraoxon-inhibited electric eel acetylcholinesterase (EeAChE) and recombinant human acetylcholinesterase (rHuAChE) are reported. Several newly synthesized compounds efficiently reactivated inhibited EeAChE, but were poor reactivators of inhibited rHuAChE. Compounds bearing a thiophene ring in the side chain (20, 23, 26 and 29) showed better reactivation (24-37% for EeAChE and 5-9% for rHuAChE) compared to compounds with furan and isoxazole heterocycles (0-8% for EeAChE and 2-3% for rHuAChE) at 10(-5)M. The N-pyridyl-CH(2)COOH analog 8 reactivated EeAChE (36%) and rHuAChE (15%) at 10(-4)M with a k(r) value better than 2-pyridine aldoxime methiodide (2-PAM) for rHuAChE.
Acute toxicity of organophosphorus poisons (OP) is explained by inhibition of acetylcholinesterase in nerve synapses. Low-dose effects are hypothesized to result from modification of other proteins, whose identity is not yet established. The goal of the present work was to obtain information that would make it possible to identify tubulin as a target of OP exposure. Tubulin was selected for study because live mice injected with a nontoxic dose of a biotinylated organophosphorus agent appeared to have OP-labeled tubulin in brain as determined by binding to avidin beads and mass spectrometry. The experiments with live mice were not conclusive because binding to avidin beads could be nonspecific. To be convincing, it is necessary to find and characterize the OP-labeled tubulin peptide. The search for OP-labeled tubulin peptides was begun by identifying residues capable of making a covalent bond with OP. Pure bovine tubulin (0.012 mM) was treated with 0.01-0.5 mM chlorpyrifos oxon for 24 h at 37 degrees C in pH 8.3 buffer. The identity of labeled amino acids and percent labeling was determined by mass spectrometry. Chlorpyrifos oxon bound covalently to tyrosines 83, 103, 108, 161, 224, 262, 272, 357, and 399 in bovine alpha tubulin, and to tyrosines 50, 51, 59, 106, 159, 281, 310, and 340 in bovine beta tubulin. The most reactive were tyrosine 83 in alpha and tyrosine 281 in beta tubulin. In the presence of 1 mM GTP, percent labeling increased 2-fold. Based on the crystal structure of the tubulin heterodimer (PDB 1jff) tyrosines 83 and 281 are well exposed to solvent. In conclusion seventeen tyrosines in tubulin have the potential to covalently bind chlorpyrifos oxon. These results will be useful when searching for OP-labeled tubulin in live animals.
The expectation from the literature is that organophosphorus (OP) agents bind to proteins that have an active site serine. However, transferrin, a protein with no active site serine, was covalently modified in vitro by 0.5mM 10-fluoroethoxyphosphinyl-N-biotinamido pentyldecanamide, chlorpyrifos oxon, diisopropylfluorophosphate, dichlorvos, sarin, and soman. The site of covalent attachment was identified by analyzing tryptic peptides in the mass spectrometer. Tyr 238 and Tyr 574 in human transferrin and Tyr 238, Tyr 319, Tyr 429, Tyr 491, and Tyr 518 in mouse transferrin were labeled by OP. Tyrosine in the small synthetic peptide ArgTyrThrArg made a covalent bond with diisopropylfluorophosphate, chlorpyrifos oxon, and dichlorvos at pH 8.3. These results, together with our previous demonstration that albumin and tubulin bind OP on tyrosine, lead to the conclusion that OP bind covalently to tyrosine, and that OP binding to tyrosine is a new OP-binding residue. The OP-reactive tyrosines are activated by interaction with Arg or Lys. It is suggested that many proteins in addition to those already identified may be modified by OP on tyrosine. The extent to which tyrosine modification by OP can occur in vivo and the toxicological implications of such modifications require further investigation.
Tyrosine 411 of human albumin is an established site for covalent attachment of 10-fluoroethoxyphosphinyl- N-biotinamidopentyldecanamide (FP-biotin), diisopropylfluorophosphate, chlorpyrifos oxon, soman, sarin, and dichlorvos. This work investigated the hypothesis that other residues in albumin could be modified by organophosphorus agents (OP). Human plasma was aggressively treated with FP-biotin; plasma proteins were separated into high and low abundant portions using a proteome partitioning antibody kit, and the proteins were digested with trypsin. The FP-biotinylated tryptic peptides were isolated by binding to monomeric avidin beads. The major sites of covalent attachment identified by mass spectrometry were Y138, Y148, Y401, Y411, Y452, S232, and S287 of human albumin. Prolonged treatment of pure human albumin with chlorpyrifos oxon labeled Y138, Y150, Y161, Y401, Y411, and Y452. To identify the most reactive residue, albumin was treated for 2 h with DFP, FP-biotin, chlorpyrifos oxon, or soman, digested with trypsin or pepsin, and analyzed by mass spectrometry. The most reactive residue was always Tyr 411. Diethoxyphosphate-labeled Tyr 411 was stable for months at pH 7.4. These results will be useful in the development of specific antibodies to detect OP exposure and to engineer albumin for use as an OP scavenger.
        
Title: Mass spectrometry identifies covalent binding of soman, sarin, chlorpyrifos oxon, diisopropyl fluorophosphate, and FP-biotin to tyrosines on tubulin: a potential mechanism of long term toxicity by organophosphorus agents Grigoryan H, Schopfer LM, Thompson CM, Terry AV, Masson P, Lockridge O Ref: Chemico-Biological Interactions, 175:180, 2008 : PubMed
Chronic low dose exposure to organophosphorus poisons (OP) results in cognitive impairment. Studies in rats have shown that OP interfere with microtubule polymerization. Since microtubules are required for transport of nutrients from the nerve cell body to the nerve synapse, it has been suggested that disruption of microtubule function could explain the learning and memory deficits associated with OP exposure. Tubulin is a major constituent of microtubules. We tested the hypothesis that OP bind to tubulin by treating purified bovine tubulin with sarin, soman, chlorpyrifos oxon, diisopropylfluorophosphate, and 10-fluoroethoxyphosphinyl-N-biotinamidopentyldecanamide (FP-biotin). Tryptic peptides were isolated and analyzed by mass spectrometry. It was found that OP bound to tyrosine 83 of alpha tubulin in peptide TGTYR, tyrosine 59 in beta tubulin peptide YVPR, tyrosine 281 in beta tubulin peptide GSQQYR, and tyrosine 159 in beta tubulin peptide EEYPDR. The OP reactive tyrosines are located either near the GTP binding site or within loops that interact laterally with protofilaments. It is concluded that OP bind covalently to tubulin, and that this binding could explain cognitive impairment associated with OP exposure.
        
Title: Analysis and sequencing of the active-site peptide from native and organophosphate-inactivated acetylcholinesterase by electrospray ionization, quadrupole/time-of-flight (QTOF) mass spectrometry Spaulding RS, George KM, Thompson CM Ref: Journal of Chromatography B Analyt Technol Biomed Life Sciences, 830:105, 2006 : PubMed
A method to identify and sequence recombinant mouse acetylcholinesterase (rMoAChE) including the native and organophosphate-modified active-site peptides was developed using capillary liquid chromatography with electrospray ionization, quadrupole/time-of-flight mass spectrometry. Addition of 2-propanol to the reversed-phase gradient system and a decreased gradient slope improved the peptide resolution and the signal of the active-site peptide. The highest protein coverage and active-site peptide signal were achieved when the rMoAChE:chymotrypsin ratio of 5:1 was used with digestion at 37 degrees C. rMoAChE and the active-site peptide were identified and sequenced from chymotryptic digests of native, methyl paraoxon-, and ethyl paraoxon-inactivated rMoAChE showing unequivocally that the exact modification site was the active-site serine.
Title: Life without acetylcholinesterase: the implications of cholinesterase inhibitor toxicity in AChE-knockout mice Lockridge O, Duysen EG, Voelker T, Thompson CM, Schopfer LM Ref: Environ Toxicol Pharmacol, 19:463, 2005 : PubMed
The acetylcholinesterase (AChE)-knockout mouse is a new tool for identifying physiologically relevant targets of organophosphorus toxicants (OP). If AChE were the only important target for OP toxicity, then mice with zero AChE would have been expected to be resistant to OP. The opposite was found. AChE-/- mice were more sensitive to the lethality of DFP, chlorpyrifos oxon, iso-OMPA, and the nerve agent VX. A lethal dose of OP caused the same cholinergic signs of toxicity in mice with zero AChE as in mice with normal amounts of AChE. This implied that the mechanism of toxicity of a lethal dose of OP in AChE-/- mice was the same as in mice that had AChE, namely accumulation of excess acetylcholine followed by overstimulation of receptors. OP lethality in AChE-/- mice could be due to inhibition of BChE, or to inhibition of a set of proteins. A search for additional targets used biotinylated-OP as a marker. In vitro experiments found that biotinylated-OP appeared to label as many as 55 proteins in the 100,000xg supernatant of mouse brain. Chlorpyrifos oxon bound a set of proteins (bands 12, 41, 45) that did not completely overlap with the set of proteins bound by diazoxon (bands 9, 12, 41, 47) or dichlorvos (bands 12, 23, 24, 32, 44, 45, 51) or malaoxon (band 9). These results support the idea that a variety of proteins could be interacting with a given OP to give the neurotoxic symptoms characteristic of a particular OP.
The classical laboratory tests for exposure to organophosphorus toxicants (OP) are inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activity in blood. In a search for new biomarkers of OP exposure, we treated mice with a biotinylated organophosphorus agent, FP-biotin. The biotinylated proteins in muscle were purified by binding to avidin-Sepharose, separated by gel electrophoresis, digested with trypsin, and identified from their fragmentation patterns on a quadrupole time-of-flight mass spectrometer. Albumin and ES1 carboxylesterase (EC 3.1.1.1) were found to be major targets of FP-biotin. These FP-biotinylated proteins were also identified in mouse plasma by comparing band patterns on nondenaturing gels stained for albumin and carboxylesterase activity, with band patterns on blots hybridized with Streptavidin Alexa-680. Two additional FP-biotin targets, AChE (EC 3.1.1.7) and BChE (EC 3.1.1.8), were identified in mouse plasma by finding that enzyme activity was inhibited 50-80%. Mouse plasma contained eight additional FP-biotinylated bands whose identity has not yet been determined. In vitro experiments with human plasma showed that chlorpyrifos oxon, echothiophate, malaoxon, paraoxon, methyl paraoxon, diazoxon, diisopropylfluorophosphate, and dichlorvos competed with FP-biotin for binding to human albumin. Though experiments with purified albumin have previously shown that albumin covalently binds OP, this is the first report of OP binding to albumin in a living animal. Carboxylesterase is not a biomarker in man because humans have no carboxylesterase in blood. It is concluded that OP bound to albumin could serve as a new biomarker of OP exposure in man.
        
Title: Characteristic mass spectral fragments of the organophosphorus agent FP-biotin and FP-biotinylated peptides from trypsin and bovine albumin (Tyr410) Schopfer LM, Champion MM, Tamblyn N, Thompson CM, Lockridge O Ref: Analytical Biochemistry, 345:122, 2005 : PubMed
A mass spectrometry-based method was developed for selective detection of FP-biotinylated peptides in complex mixtures. Mixtures of peptides, at the low-picomole level, were analyzed by liquid chromatography and positive ion, nanospray, triple quadrupole, linear ion trap mass spectrometry. Peptides were fragmented by collision-activated dissociation in the mass spectrometer. The free FP-biotin and peptides containing FP-biotinylated serine or FP-biotinylated tyrosine yielded characteristic fragment ions at 227, 312, and 329 m/z. FP-biotinylated serine yielded an additional characteristic fragment ion at 591 m/z. Chromatographic peaks containing FP-biotinylated peptides were indicated by these diagnostic ions. Data illustrating the selectivity of the approach are presented for tryptic digests of FP-biotinylated trypsin and FP-biotinylated serum albumin. A 16-residue peptide from bovine trypsin was biotinylated on the active site serine. A 3-residue peptide from bovine albumin, YTR, was biotinylated on Tyr410. This latter result confirms that the organophosphorus binding site of albumin is a tyrosine. This method can be used to search for new biomarkers of organophosphorus agent exposure.
        
Title: Reaction kinetics of biotinylated organophosphorus toxicant, FP-biotin, with human acetylcholinesterase and human butyrylcholinesterase Schopfer LM, Voelker T, Bartels CF, Thompson CM, Lockridge O Ref: Chemical Research in Toxicology, 18:747, 2005 : PubMed
A biotinylated organophosphate could be useful for identifying proteins that react with organophosphorus toxicants (OP). FP-biotin, 10-(fluoroethoxyphosphinyl)-N-(biotinamidopentyl)decanamide, was synthesized and found to be stable in methanol and chloroform but less stable in water. Because acetylcholinesterase (AChE, EC 3.1.1.7) and butyrylcholinesterase (BChE, EC 3.1.1.8) are known to be sensitive targets of OP, their reactivity with FP-biotin was tested. The rate constant for reaction with human AChE was 1.8 x 10(7) M(-1) min(-1), and for human BChE, it was 1.6 x 10(8) M(-1) min(-1). A phosphorus stereoisomer, constituting about 50% of the FP-biotin preparation, appeared to be the reactive species. The binding affinity was estimated to be >85 nM for AChE and >5.8 nM for BChE. It was concluded that FP-biotin is a potent OP, well-suited for searching for new biomarkers of OP exposure.
Acetylcholinesterase (AChE) expression is regulated in cell types at the transcriptional and translational levels. In this study, we characterized and compared AChE catalytic activity, mRNA, protein expression, and protein localization in a variety of neuronal (SH-SY5Y neuroblastoma and primary cerebellar granule neurons (CGN)) and non-neuronal (LLC-MK2, HeLa, THP-1, and primary astrocytes) cell types. All cell lines expressed AChE catalytic activity; however the levels of AChE-specific activity were higher in neuronal cells than in the non-neuronal cell types. CGN expressed significantly more AChE activity than SH-SY5Y cells. All cell lines analyzed expressed AChE protein at equivalent levels, as well as mRNA splice variants. Localization of AChE was characterized by immunofluorescence and confocal microscopy. SH-SY5Y, CGN, and nerve-growth factor-differentiated PC-12 cells exhibited a pattern of AChE localization characterized as diffuse in the cytoplasm and punctate staining along neurites and on the plasma membrane. The localization in HeLa, LLC-MK2, fibroblasts, and undifferentiated PC-12 cells was significantly different than in neuronal cells-AChE was intensely localized in the perinuclear region, without staining near or on the plasma membrane. Based on the evidence presented here, we hypothesize that the presence of AChE protein doesn't correlate with catalytic activity, and the diffuse cytoplasmic and plasma membrane localization of AChE is a property of neuronal cell types.
        
Title: Stereoselective inactivation of Torpedo californica acetylcholinesterase by isomalathion: inhibitory reactions with (1R)- and (1S)-isomers proceed by different mechanisms Doorn JA, Thompson CM, Christner RB, Richardson RJ Ref: Chemical Research in Toxicology, 16:958, 2003 : PubMed
The present study was undertaken to test the hypothesis that acetylcholinesterase (AChE) inhibition by isomalathion stereoisomers proceeds with different primary leaving groups for (1R)- and (1S)-isomers. Consistent with results obtained with enzyme from other species, AChE from Torpedo californica (TcAChE) was stereoselectively inhibited by isomalathion isomers with the (1R,3R)-isomer exhibiting greater potency than (1S,3S)-isomalathion. TcAChE modified by (1R)-isomers readily reactivated in the presence of 2-pralidoxime methiodide (2-PAM), whereas enzyme inhibited by (1S)-isomalathions was intractable toward reactivation. Computer-based molecular modeling showed that the ligand positioned as the primary leaving group was diethyl thiosuccinyl for (1R)-isomers and thiomethyl for (1S)-isomalathions. Mass spectral analysis revealed that inhibition of TcAChE by (1R)-isomers resulted in an O,S-dimethyl phosphate adduct, as expected from expulsion of the diethyl thiosuccinyl ligand. In contrast, inactivation of the enzyme by (1S)-isomalathions yielded an O-methyl phosphate adduct, consistent with initial loss of thiomethyl followed by displacement of the diethyl thiosuccinyl group. The findings demonstrate that the inhibitory reactions of TcAChE with (1R)- and (1S)-isomalathions proceed by different mechanisms involving distinct primary leaving groups.
        
Title: Differentiation between acetylcholinesterase and the organophosphate-inhibited form using antibodies and the correlation of antibody recognition with reactivation mechanism and rate George KM, Schule T, Sandoval LE, Jennings LL, Taylor P, Thompson CM Ref: Journal of Biological Chemistry, 278:45512, 2003 : PubMed
Two types of polyclonal antibodies were generated from (a) a decapeptide sequence that includes the active site serine of acetylcholinesterase (anti-AChE10S) and (b) the identical decapeptide sequence phosphorylated at the active site serine of acetylcholinesterase (anti-AChE10SP). The anti-AChE10S antiserum was found to specifically recognize native, control, and vehicle-treated recombinant mouse AChE (rMoAChE) but did not recognize rMoAChE that was phosphorylated by the four organophosphate (OP) compounds tested. Conversely the anti-AChE10SP antiserum recognized phosphoserine rMoAChE that resulted from reaction with phosphorous oxychloride (POCl3) but did not recognize native or vehicle-treated rMoAChE. Anti-AChE10SP also did not recognize OP-AChE conjugates that resulted from the reaction of rMoAChE with other OP compounds that afford neutral or monoanionic phosphoserine groups thereby indicating a high specificity for a precise OP conjugate. Antisera recognition correlated well with the rates of enzyme inhibition, aging, and oxime-induced reactivation indicating these antisera can both quantify the extent and type of inhibition and also differentiate between select mechanisms of inhibition. The ability to discern mechanistic differences between native AChE and OP-AChE conjugates suggests that these antisera can be used to identify biomarkers of OP exposure in a mechanism-based approach.
        
Title: Examination of cross-antigenicity of acetylcholinesterase and butyrylcholinesterase using anti-acetylcholinesterase antibodies George KM, Montgomery MA, Sandoval LE, Thompson CM Ref: Toxicol Lett, 126:99, 2002 : PubMed
Acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) share a high degree of homology and overlap in several biochemical properties. This study aimed to compare and contrast the antigenic reactivity of AChE and BuChE with several polyclonal antibodies. We have performed a detailed analysis of AChE and BuChE enzymatic activities with different substrates and different inhibitors. Immunoassays conducted with polyclonal amino-terminus-specific anti-AChE antibodies were selective for mouse and electric eel AChE (EEAChE). Polyclonal carboxy-terminus-specific anti-AChE antibodies reacted with EEAChE and human BuChE, indicating an unexpected cross-reactivity. Polyclonal antisera raised against the whole AChE protein cross-reacted with horse BuChE, but not human BuChE. These data demonstrate that AChE and BuChE are immunologically similar.
        
Title: Probing the active sites of butyrylcholinesterase and cholesterol esterase with isomalathion: conserved stereoselective inactivation of serine hydrolases structurally related to acetylcholinesterase Doorn JA, Talley TT, Thompson CM, Richardson RJ Ref: Chemical Research in Toxicology, 14:807, 2001 : PubMed
Previous work has shown that acetylcholinesterase (AChE), a member of the alpha/beta-hydrolase superfamily, is stereoselectively inhibited by the four stereoisomers of isomalathion. Recent kinetic and mass spectral data demonstrated that a difference in mechanism of inactivation exists for AChE treated with (1R)- versus (1S,3S)-stereoisomers. This study sought to determine whether other alpha/beta-hydrolases are stereoselectively inhibited by isomalathion and if the difference in mechanism of AChE inactivation between (1R)- and (1S,3S)-isomers is conserved for other alpha/beta-hydrolases. Bimolecular rate constants of inhibition (k(i)) were measured for human and equine butyrylcholinesterase (HBChE and EBChE, respectively) and bovine cholesterol esterase (BCholE) with all four isomers. Isomalathion isomers inhibited these enzymes with the following order of potency: (1R,3R) > (1R,3S) > (1S,3R) > or = (1S,3S). Ratios of k(i) values for the most potent to the least potent isomer were 10.5 (HBChE), 11.9 (EBChE), and 68.6 (BCholE). Rate constants of reactivation (k(3)) were measured for enzyme inhibited by isomalathion isomers. HBChE, EBChE, and BCholE inactivated by the (1R)-isomers readily reactivated. However, enzymes modified by (1S)-isomalathions were refractory toward reactivation, and k(3) values were not significantly different from zero for HBChE and BCholE treated with the (1S,3S)-isomer. Computer-based docking experiments were performed for BCholE with (1R,3R)- and (1S,3S)-enantiomers. Calculated structures predicted a difference in primary leaving group: diethyl thiosuccinate for (1R,3R)-isomalathion and thiomethyl for the (1S,3S)-isomer. The data demonstrate that the alpha/beta-hydrolases used in this study are stereoselectively inhibited by isomalathion. Furthermore, the results suggest that the mechanistic shift demonstrated to occur for inhibition of AChE by (1R)- versus (1S,3S)-isomers is conserved for butyrylcholinesterase and cholesterol esterase.
        
Title: Identification of Butyrylcholinesterase Adducts after Inhibition with Isomalathion Using Mass Spectrometry: Difference in Mechanism between (1R)- and (1S)-Stereoisomers Doorn JA, Schall M, Gage DA, Talley TT, Thompson CM, Richardson RJ Ref: Toxicol Appl Pharmacol, 176:73, 2001 : PubMed
Previous kinetic studies found that butyrylcholinesterase (BChE) inhibited by (1R)-isomalathions readily reactivated, while enzyme inactivated by (1S)-isomers did not. This study tested the hypothesis that (1R)- and (1S)-isomers inhibit BChE by different mechanisms, yielding distinct adducts identifiable by peptide mass mapping with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Equine BChE (EBChE) was inhibited to <10% of control activity with each isomer of isomalathion and the reference compound isoparathion methyl. Control and treated enzyme was digested with trypsin, and peptides were fractionated with HPLC. Separated and unseparated peptides were analyzed with MALDI-TOF-MS. Identity of an organophosphorus peptide adduct was confirmed by fragmentation using postsource decay analysis. EBChE inhibited by (1R)-isomalathions or (S)-isoparathion methyl readily reactivated after oxime treatment with 30-40% activity recovered. Enzyme inactivated by (1S)-isomalathions or (R)-isoparathion methyl recovered <2% and <5% activity, respectively, after oxime treatment. MALDI-TOF-MS analysis revealed that inhibition of EBChE by (1R)-isomalathions and (R)- or (S)-isoparathion methyl yielded O,S-dimethyl phosphate adducts. Enzyme inactivated by (1S)-isomalathions produced only O-methyl phosphate adduct. EBChE modified by (1R)-isomalathions or either enantiomer of isoparathion methyl yielded an O-methyl phosphate adduct as well. The results indicate that EBChE inhibition by (1R)-isomalathions proceeds with loss of diethyl thiosuccinate, but inactivation by (1S)-isomers occurs with loss of thiomethyl as the primary leaving group followed by rapid expulsion of diethyl thiosuccinate to yield an aged enzyme. Furthermore, the data suggest that aging of the O,S-dimethyl phosphate adduct occurs via an S(N)2 process with loss of thiomethyl.
        
Title: Inhibition of acetylcholinesterase by (1S,3S)-isomalathion proceeds with loss of thiomethyl: kinetic and mass spectral evidence for an unexpected primary leaving group Doorn JA, Gage DA, Schall M, Talley TT, Thompson CM, Richardson RJ Ref: Chemical Research in Toxicology, 13:1313, 2000 : PubMed
Previous work demonstrated kinetically that inhibition of mammalian acetylcholinesterase (AChE) by (1S)-isomalathions may proceed by loss of thiomethyl instead of the expected diethyl thiosuccinate as the primary leaving group followed by one of four possible modes of rapid aging. This study sought to identify the adduct that renders AChE refractory toward reactivation after inhibition with the (1S, 3S)-stereoisomer. Electric eel acetylcholinesterase (EEAChE) was inhibited with the four stereoisomers of isomalathion, and rate constants for spontaneous and oxime-mediated reactivation (k(3)) were measured. Oxime-mediated k(3) values were >25-fold higher for enzyme inhibited by (1R)- versus (1S)-stereoisomers with the greatest contrast between the (1R,3R)- and (1S,3S)-enantiomers. EEAChE inactivated by (1R,3R)-isomalathion reactivated spontaneously and in the presence of pyridine-2-aldoxime methiodide (2-PAM) with k(3) values of 1.88 x 10(5) and 4.18 x 10(5) min(-)(1), respectively. In contrast, enzyme treated with the (1S,3S)-enantiomer had spontaneous and 2-PAM-mediated k(3) values of 0 and 6.05 x 10(3) min(-)(1), respectively. The kinetic data that were measured were consistent with those obtained for mammalian AChE used in previous studies. Identification of the adduct that renders EEAChE stable toward reactivation after inhibition with (1S,3S)-isomalathion was accomplished using a peptide mass mapping approach with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). A peak with a mass corresponding to the active site peptide containing the catalytic Ser with a covalently bound O-methyl phosphate adduct was found in the mass spectra of (1S, 3S)-treated EEAChE but not control samples. Identities of the modified active site peptide and adduct were confirmed by fragmentation in MALDI-TOF-MS post-source decay (PSD) analysis, and peaks corresponding to the loss of an adduct as phosphorous/phosphoric acid methyl ester were observed. The results demonstrate that inhibition of EEAChE by (1S,3S)-isomalathion proceeds with loss of thiomethyl as the primary leaving group followed by rapid expulsion of diethyl thiosuccinate as the secondary leaving group to yield an aged enzyme.
Six organophosphorus compounds linked to fluorophore groups were prepared in an effort to selectively modify the active site of acetylcholinesterase and deliver probes to the gorge region. Two compounds that vary by the length of a methylene (CH2) group, pyrene-SO2NH(CH2)nNHC(O)CH2CH2P(O)(OEt)(F) (where n = 2 or 3) were found to be potent, irreversible inhibitors of recombinant mouse AChE (Ki approximately 10(5) M(-1) min(-1)). Size exclusion chromatography afforded a fluorescently-labeled cholinesterase conjugate.
Inhibition of acetylcholinesterase (AChE) by isomalathion has been assumed to proceed by expulsion of diethyl thiosuccinyl to produce O, S-dimethyl phosphorylated AChE. If this assumption is correct, AChE inhibited by (1R)- or (1S)-isomalathions should reactivate at the same rate as AChE inhibited by configurationally equivalent (S)- or (R)-isoparathion methyl, respectively, which are expected to inhibit AChE by loss of 4-nitrophenoxyl to yield O,S-dimethyl phosphorylated AChEs. Previous work has shown that rat brain AChE inhibited by (1R)-isomalathions reactivates at the same rate as the enzyme inhibited by (S)-isoparathion methyl. However, although rat brain AChE inhibited by (R)-isoparathion methyl reactivates at a measurable rate, the enzyme inhibited by (1S)-isomalathions is intractable to reactivation. This surprising finding suggests the hypothesis that (1R)- and (1S)-stereoisomers of isomalathion inhibit AChE by different mechanisms, yielding enzymatic species distinguishable by their postinhibitory kinetics. The present study was carried out to test this hypothesis by comparing kinetic constants of reactivation (k+3) and aging (k+4) of hen brain AChE and bovine erythrocyte AChE inhibited by the four stereoisomers of isomalathion and the two stereoisomers of isoparathion methyl. Both AChEs inhibited by either (1R,3R)- or (1R,3S)-isomalathion had comparable corresponding k+3 values (spontaneous and oxime-mediated) to those of AChEs inhibited with (S)-isoparathion methyl. However, spontaneous and oxime-mediated k+3 values comparable to those of (R)-isoparathion methyl could not be obtained for AChEs inhibited by (1S,3R)- and (1S,3S)-isomalathion. Comparison of k+4 values for hen brain AChE inhibited by each stereoisomer of isomalathion and isoparathion methyl corroborated that only the (1S)-isomalathions failed to produce the expected O,S-dimethyl phosphoryl-conjugated enzymes. The results for (1R)-isomalathions suggest that the mechanism of inhibition of AChE by these isomers is the expected one involving diethyl thiosuccinyl as the primary leaving group. In contrast, the results for (1S)-isomalathions are consistent with an alternative mechanism of inhibition by these isomers implicating loss of thiomethyl as the primary leaving group.
        
Title: Isomalathion Stereoisomers Talley TT, Jianmongkol S, Richardson RJ, Radic Z, Thompson CM Ref: In: Structure and Function of Cholinesterases and Related Proteins - Proceedings of Sixth International Meeting on Cholinesterases, (Doctor, B.P., Taylor, P., Quinn, D.M., Rotundo, R.L., Gentry, M.K. Eds) Plenum Publishing Corp.:531, 1998 : PubMed
Title: Inhibition of various cholinesterases with the enantiomers of malaoxon Rodriguez OP, Muth GW, Berkman CE, Kim K, Thompson CM Ref: Bulletin of Environmental Contamination & Toxicology, 58:171, 1997 : PubMed
Title: Relative potencies of the four stereoisomers of isomalathion for inhibition of hen brain acetylcholinesterase and neurotoxic esterase in vitro Jianmongkol S, Berkman CE, Thompson CM, Richardson RJ Ref: Toxicology & Applied Pharmacology, 139:342, 1996 : PubMed
The cholinergic toxicity of malathion is exacerbated by its isomerization product, isomalathion, which inhibits detoxifying carboxylesterases as well as target acetylcholinesterase (AChE). Previous work has shown that the four stereoisomers of isomalathion, (1R, 3R), (1R, 3S), (1S, 3R), and (1S, 3S), differ in their inhibitory potencies against either rat brain or electric eel AChE. The present study examined the relative inhibitory potencies of these stereoisomers and the totally racemic mixture (1RS, 3RS) against hen brain AChE and neurotoxic esterase (NTE) to provide new data on stereoselective inhibition of neurotoxicologically significant esterases and to assess the potential of these compounds to cause organophosphorus (OP) compound-induced delayed neurotoxicity (OPIDN). The order of potencies against hen brain AChE was (1R, 3R) > (1R, 3S) > (1RS, 3RS) > (1S, 3R) > (1S, 3S), with a 15-fold difference between the strongest (ki = 388 mM-1 min-1; 20 min I50 = 89.3 nM) and weakest (ki = 25.6 mM-1 min-1; 20 min I50 = 1354 nM) inhibitors. Both asymmetric centers contributed substantially and interdependently to inhibitory potency, but the effect of changing the configuration at phosphorus alone was greater than changing the configuration at carbon alone. None of the isomalathions was an effective inhibitor of hen brain NTE (extrapolated 20 min I50 values were 1.2 to 29 mM), yielding NTE/ AChE I50 ratios (neuropathy target ratios, NTRs) of 1.5 x 10(3) to 1.5 x 10(5). NTRs of this magnitude indicate that none of the isomalathions should initiate OPIDN, even after doses greatly exceeding the LD50. Therefore, reports of OPIDN or other neuropathic sequelae associated with malathion exposures in humans cannot be explained on the basis of NTE inhibition by contaminating isomalathions.
        
Title: Synthesis and 31P chemical shift identification of tripeptide active site models that represent human serum acetylcholinesterase covalently modified at serine by certain organophosphates Thompson CM, Suarez AI, Rodriguez OP Ref: Chemical Research in Toxicology, 9:1325, 1996 : PubMed
Most organophosphorus (OP) insecticides impart their toxic action via inhibition of cholinesterases by reacting at an essential serine hydroxyl group. The inhibition process is dependent upon the reactivity, stereochemistry, leaving group, and the mechanism of phosphorylation and/or reactivation (or aging) inherent to the OP compound under consideration. Because a wide array of phosphorylated structures are possible following inhibition by an OP, a simple model system was sought to investigate the mechanistic details of these and related reactions. In the present study, the tripeptide N-CBZ-Glu-Ser(OH)-Ala-OEt (chosen as a truncated form of human serum cholinesterase) was chemically modified at the serine hydroxyl group by various O-methyl phosphate groups and the 31P NMR chemical shift recorded. Six tripeptides, representing (a) phosphorylation by dimethyl phosphorothionates (N-CBZ-Glu-Ser[O-P(S)(OMe)2]Ala-OEt; 5), (b) phosphorylation by dimethyl phosphates (N-CBZ-Glu-Ser[O-P(O)(OMe)2] Ala-Oet; 6), (c) phosphorylation by O,S-dimethyl phosphorothiolates (N-CBZ-Glu-Ser[O-P(O)(OMe)(SMe)]Ala-OEt; 7), (d) aging following inhibition by dimethyl phosphorothionates (N-CBZ-Glu-Ser[O-P(O)(OMe)(S-)]Ala-OEt; 8), (e) aging following inhibition by dimethyl phosphates (N-CBZ-Glu-Ser[O-P(O)(OMe)(O-)]Ala-OEt; 9), and (f) phosphorylation by R/S)PSc-isomalathion stereoisomers (N-CBZ-Glu-Ser[O-P(O)(OMe)(SCH(CO2CO2Et)CH2-CO2Et)]Ala-OEt; 10) have been synthesized. Tripeptides 5 and 6 were prepared via preliminary formation of an intermediate tripeptide phosphite followed by direct conversion to 5 using S8 or to 6 with m-CPBA, respectively. Tripeptides 8 and 9 were prepared by dealkylation of 5 and 6, respectively. Tripeptides 7 and 10 were prepared by reaction of 8 with dimethyl sulfate and (R)- or (S)-diethyl (trifluoromethanesulfonyl)malate, respectively.
        
Title: Synthesis, absolute configuration, and analysis of malathion, malaoxon, and isomalathion enantiomers [published erratum appears in Chem Res Toxicol 1994 Mar-Apr;7(2):275] Berkman CE, Thompson CM, Perrin SR Ref: Chemical Research in Toxicology, 6:718, 1993 : PubMed
Syntheses of the enantiomers of malathion, malaoxon, and isomalathion are reported herein. Malathion enantiomers were prepared from (R)- or (S)-malic acid in three steps. Enantiomers of malathion were converted to the corresponding enantiomers of malaoxon in 52% yield by oxidation with monoperoxyphthalic acid, magnesium salt. The four isomalathion stereoisomers were prepared via two independent pathways using strychnine to resolve the asymmetric phosphorus moiety. The absolute configurations of the four stereoisomers of isomalathion were determined by X-ray crystallographic analysis of an alkaloid salt precursor. A high-performance liquid chromatography technique was developed to resolve the four stereoisomers of isomalathion, and to determine their stereoisomeric ratios.
        
Title: Interaction of acetylcholinesterase with the enantiomers of malaoxon and isomalathion Berkman CE, Quinn DA, Thompson CM Ref: Chemical Research in Toxicology, 6:724, 1993 : PubMed
The biomolecular reaction constants (ki), dissociation constants (Kd), and phosphorylation constants (kp) were determined for the enantiomers of malaoxon against rat brain acetylcholinesterase, and for the stereoisomers of isomalathion against rat brain acetylcholinesterase and electric eel acetylcholinesterase. (R)-Malaoxon was an 8.6-fold more potent anti-cholinesterase than (S)-malaoxon. Isomalathion stereoisomers with the R configuration at carbon were 3-13-fold stronger inhibitors than those with the S configuration. The isomalathion stereoisomers with the R configuration at phosphorus were 4.3-8.8-fold stronger inhibitors of rat brain acetylcholinesterase, yet 3.4-5.8-fold weaker inhibitors of electric eel acetylcholinesterase, than the isomalathion stereoisomers with the S configuration at phosphorus. The rat brain acetylcholinesterase spontaneous (k0 = approximately 13.0 x 10(-3) min-1) and oxime-mediated (koxime) = 51.0 x 10(-3) min-1) reactivation rate constants following inhibition by isomalathion stereoisomers with the R configuration at phosphorus were comparable to spontaneous (11.3 x 10(-3) min-1) and oxime-mediated (50.2 x 10(-3) min-1) reactivation rates obtained for (S)-isoparathion methyl. These data support a common phosphorylation mechanism, namely, the displacement of the thiosuccinyl moiety from isomalathion stereoisomers with the R configuration at phosphorus, and displacement of the p-nitrophenoxy ligand from (S)-isoparathion methyl to form the same O,S-dimethyl phosphorothiolated enzyme. Rat brain acetylcholinesterase inhibited by the isomalathion stereoisomers with the S configuration at phosphorus were refractory to reactivation, suggesting an alternate mechanism of inhibition, i.e., the loss of the methylthio ligand. Several mechanisms are proposed to account for the subsequent nonreactivation.(ABSTRACT TRUNCATED AT 250 WORDS)
        
Title: Kinetics of the postinhibitory reactions of acetylcholinesterase poisoned by chiral isomalathion: a surprising nonreactivation induced by the RP stereoisomers Berkman CE, Ryu S, Quinn DA, Thompson CM Ref: Chemical Research in Toxicology, 6:28, 1993 : PubMed
Inhibitory (ki), spontaneous (k0), and oxime-mediated reactivation (k(oxime)) reaction kinetics for the four stereoisomers of isomalathion (SPRC,SPSC,RPRC, and RPSC) were determined against rat brain acetylcholinesterase (AChE). (SPRC)-Isomalathion was the most potent anticholinesterase agent and RPSC-isomalathion the least potent with racemic material approximately midway in activity. Following inhibition of rat brain AChE by (SPRC)- or (SPSC)-isomalathion, k0 and k(oxime) values were obtained that were comparable to (SP)-isoparathion methyl, indicating that the same mechanism of inhibition was shared, namely, formation of an O,S-dimethyl phosphorothiolated enzyme. Conversely, no appreciable reactivation occurred with or without oxime following inhibition of rat brain AChE by (RPSC)- or (RPRC)-isomalathion. This observation was not consistent with (RP)-isoparathion methyl, and a switch in inhibition mechanism to the loss of the thiomethyl moiety is suggested. The nonreactivation of rat brain AChE following inhibition by the (RP)-isomalathion stereoisomers is postulated to result from a mechanism involving either a beta-elimination of diethyl fumarate or displacement of the thiosuccinate moiety from the phosphate moiety.