Comparative gene identification-58 (CGI-58), also known as alpha/beta hydrolase domain containing 5 (ABHD5), is the co-activator of adipose triglyceride lipase that hydrolyzes triglycerides stored in the cytosolic lipid droplets. Mutations in CGI-58 gene cause Chanarin-Dorfman syndrome (CDS), an autosomal recessive neutral lipid storage disease with ichthyosis. The liver pathology of CDS manifests as steatosis and steatohepatitis, which currently has no effective treatments. Perilipin-3 (Plin3) is a member of the Perilipin-ADRP-TIP47 (PAT) protein family that is essential for lipid droplet biogenesis. The objective of this study was to test a hypothesis that deletion of a major lipid droplet protein alleviates fatty liver pathogenesis caused by CGI-58 deficiency in hepatocytes. Adult CGI-58-floxed mice were injected with adeno-associated vectors simultaneously expressing the Cre recombinase and microRNA against Plin3 under the control of a hepatocyte-specific promoter, followed by high-fat diet (HFD) feeding for 6 weeks. Liver and blood samples were then collected from these animals for histological and biochemical analysis. Plin3 knockdown in hepatocytes prevented steatosis, steatohepatitis, and necroptosis caused by hepatocyte CGI-58 deficiency. Our work is the first to show that inhibiting Plin3 in hepatocytes is sufficient to mitigate hepatocyte CGI-58 deficiency-induced hepatic steatosis and steatohepatitis in mice.
The process of recycling poly(ethylene terephthalate) (PET) remains a major challenge due to the enzymatic degradation of high-crystallinity PET (hcPET). Recently, a bacterial PET-degrading enzyme, PETase, was found to have the ability to degrade the hcPET, but with low enzymatic activity. Here we present an engineered whole-cell biocatalyst to simulate both the adsorption and degradation steps in the enzymatic degradation process of PETase to achieve the efficient degradation of hcPET. Our data shows that the adhesive unit hydrophobin and degradation unit PETase are functionally displayed on the surface of yeast cells. The turnover rate of the whole-cell biocatalyst toward hcPET (crystallinity of 45%) dramatically increases approximately 328.8-fold compared with that of purified PETase at 30 degreesC. In addition, molecular dynamics simulations explain how the enhanced adhesion can promote the enzymatic degradation of PET. This study demonstrates engineering the whole-cell catalyst is an efficient strategy for biodegradation of PET.
Glioblastoma multiforme (GBM) is the intracranial malignancy with the highest rates of morbidity and mortality. Chemotherapy is often ineffective against GBM due to the presence of the blood-brain barrier (BBB); however, the application of nanotechnology is expected to overcome this limitation. Poly(lactic-co-glycolic acid) (PLGA) is a degradable and nontoxic functional polymer with good biocompatibility that is widely used in the pharmaceutical industry. Previous studies have shown that the ability of PLGA nanoparticles (NPs) to penetrate the BBB is largely determined by their size; however, determination of the optimal PLGA NP size requires further research. Here, we report a tandutinib-based prodrug (proTan), which responds to the GBM microenvironment, that was combined with NPs to overcome the BBB. AMD3100-PLGA NPs loaded with proTan inhibited tumor growth and effectively prolonged the survival of tumor-bearing mice.
        
Title: Efficient biodegradation of highly crystallized polyethylene terephthalate through cell surface display of bacterial PETase Chen Z, Wang Y, Cheng Y, Wang X, Tong S, Yang H, Wang Z Ref: Sci Total Environ, 709:136138, 2020 : PubMed
Polyethylene terephthalate (PET) is one of the most widely used plastics in the world. Accumulation of the discarded PET in the environment is creating a global environmental problem. Recently, a bacterial enzyme named PETase was found to have the novel ability to degrade the highly crystallized PET. However, the enzymatic activity of native PETase is still low limiting its possible use in recycling of PET. In this study, we developed a whole-cell biocatalyst by displaying PETase on the surface of yeast (Pichia pastoris) cell to improve its degradation efficiency. Our data shows that PETase could be functionally displayed on the yeast cell with enhanced pH and thermal stability. The turnover rate of the PETase-displaying yeast whole-cell biocatalyst towards highly crystallized PET dramatically increased about 36-fold compared with that of purified PETase. Furthermore, the whole-cell biocatalyst showed stable turnover rate after seven repeated use and under some chemical/solvent conditions, and its ability to degrade different commercial highly crystallized PET bottles. Our results reveal that PETase-displaying whole-cell biocatalyst affords a promising route for efficient biological recycling of PET.
In our effort to discover DPP-4 inhibitors with added benefits over currently commercially available DPP-4 inhibitors, MK-3102 (omarigliptin), was identified as a potent and selective dipeptidyl peptidase 4 (DPP-4) inhibitor with an excellent pharmacokinetic profile amenable for once-weekly human dosing and selected as a clinical development candidate. This manuscript summarizes the mechanism of action, scientific rationale, medicinal chemistry, pharmacokinetic properties, and human efficacy data for omarigliptin, which is currently in phase 3 clinical development.