Title: Full sequence and comparative analysis of the plasmid pAPEC-1 of avian pathogenic E. coli chi7122 (O78:K80:H9) Mellata M, Touchman JW, Curtiss R Ref: PLoS ONE, 4:e4232, 2009 : PubMed
BACKGROUND: Extra-intestinal pathogenic E. coli (ExPEC), including Avian Pathogenic E. coli (APEC), are very diverse. They cause a complex of diseases in Human, animals, and birds. Even though large plasmids are often associated with the virulence of ExPEC, their characterization is still in its infancy. METHODOLOGY/PRINCIPAL FINDINGS: We fully sequenced and analyzed the large plasmid pAPEC-1 (103,275-bp) associated with the APEC strain chi7122, from worldwide serogroup O78ratioK80ratioH9. A putative virulence region spanning an 80-kb region of pAPEC-1 possesses four iron acquisition systems (iutA iucABCD, sitABCD, iroBCDN, and temperature-sensitive hemagglutinin tsh), a colicin V operon, increasing serum sensitivity iss, ompT, hlyF, and etsABC. Thirty three ORFs in pAPEC-1 are identified as insertion sequences (ISs) that belong to nine families with diverse origins. The full length of the transfer region in pAPEC-1 (11 kb) is shorter compared to the tra region of other sequenced F plasmids; the absence of some tra genes in pAPEC-1 affects its self-transferability, and the conjugative function of the plasmid was effective only in the presence of other plasmids. Two-replicon systems, repFIIA-repFIC and repFIB, and two post-segregational systems, srnB and hok/sok, are also present in the sequence of pAPEC-1. The comparison of the pAPEC-1 sequence with the two available plasmid sequences reveals more gene loss and reorganization than previously appreciated. The presence of pAPEC-1-associated genes is assessed in human ExPEC by PCR. Many patterns of association between genes are found. CONCLUSIONS/SIGNIFICANCE: The pathotype typical of pAPEC-1 was present in some human strains, which indicates a horizontal transfer between strains and the zoonotic risk of APEC strains. ColV plasmids could have common virulence genes that could be acquired by transposition, without sharing genes of plasmid function.
Despite the fact that heliobacteria are the only phototrophic representatives of the bacterial phylum Firmicutes, genomic analyses of these organisms have yet to be reported. Here we describe the complete sequence and analysis of the genome of Heliobacterium modesticaldum, a thermophilic species belonging to this unique group of phototrophs. The genome is a single 3.1-Mb circular chromosome containing 3,138 open reading frames. As suspected from physiological studies of heliobacteria that have failed to show photoautotrophic growth, genes encoding enzymes for known autotrophic pathways in other phototrophic organisms, including ribulose bisphosphate carboxylase (Calvin cycle), citrate lyase (reverse citric acid cycle), and malyl coenzyme A lyase (3-hydroxypropionate pathway), are not present in the H. modesticaldum genome. Thus, heliobacteria appear to be the only known anaerobic anoxygenic phototrophs that are not capable of autotrophy. Although for some cellular activities, such as nitrogen fixation, there is a full complement of genes in H. modesticaldum, other processes, including carbon metabolism and endosporulation, are more genetically streamlined than they are in most other low-G+C gram-positive bacteria. Moreover, several genes encoding photosynthetic functions in phototrophic purple bacteria are not present in the heliobacteria. In contrast to the nutritional flexibility of many anoxygenic phototrophs, the complete genome sequence of H. modesticaldum reveals an organism with a notable degree of metabolic specialization and genomic reduction.
Acaryochloris marina is a unique cyanobacterium that is able to produce chlorophyll d as its primary photosynthetic pigment and thus efficiently use far-red light for photosynthesis. Acaryochloris species have been isolated from marine environments in association with other oxygenic phototrophs, which may have driven the niche-filling introduction of chlorophyll d. To investigate these unique adaptations, we have sequenced the complete genome of A. marina. The DNA content of A. marina is composed of 8.3 million base pairs, which is among the largest bacterial genomes sequenced thus far. This large array of genomic data is distributed into nine single-copy plasmids that code for >25% of the putative ORFs. Heavy duplication of genes related to DNA repair and recombination (primarily recA) and transposable elements could account for genetic mobility and genome expansion. We discuss points of interest for the biosynthesis of the unusual pigments chlorophyll d and alpha-carotene and genes responsible for previously studied phycobilin aggregates. Our analysis also reveals that A. marina carries a unique complement of genes for these phycobiliproteins in relation to those coding for antenna proteins related to those in Prochlorococcus species. The global replacement of major photosynthetic pigments appears to have incurred only minimal specializations in reaction center proteins to accommodate these alternate pigments. These features clearly show that the genus Acaryochloris is a fitting candidate for understanding genome expansion, gene acquisition, ecological adaptation, and photosystem modification in the cyanobacteria.
Purple aerobic anoxygenic phototrophs (AAPs) are the only organisms known to capture light energy to enhance growth only in the presence of oxygen but do not produce oxygen. The highly adaptive AAPs compose more than 10% of the microbial community in some euphotic upper ocean waters and are potentially major contributors to the fixation of the greenhouse gas CO2. We present the complete genomic sequence and feature analysis of the AAP Roseobacter denitrificans, which reveal clues to its physiology. The genome lacks genes that code for known photosynthetic carbon fixation pathways, and most notably missing are genes for the Calvin cycle enzymes ribulose bisphosphate carboxylase (RuBisCO) and phosphoribulokinase. Phylogenetic evidence implies that this absence could be due to a gene loss from a RuBisCO-containing alpha-proteobacterial ancestor. We describe the potential importance of mixotrophic rather than autotrophic CO2 fixation pathways in these organisms and suggest that these pathways function to fix CO2 for the formation of cellular components but do not permit autotrophic growth. While some genes that code for the redox-dependent regulation of photosynthetic machinery are present, many light sensors and transcriptional regulatory motifs found in purple photosynthetic bacteria are absent.
The National Institutes of Health Mammalian Gene Collection (MGC) Program is a multiinstitutional effort to identify and sequence a cDNA clone containing a complete ORF for each human and mouse gene. ESTs were generated from libraries enriched for full-length cDNAs and analyzed to identify candidate full-ORF clones, which then were sequenced to high accuracy. The MGC has currently sequenced and verified the full ORF for a nonredundant set of >9,000 human and >6,000 mouse genes. Candidate full-ORF clones for an additional 7,800 human and 3,500 mouse genes also have been identified. All MGC sequences and clones are available without restriction through public databases and clone distribution networks (see http:mgc.nci.nih.gov).