Organophosphorus (OP) nerve agents and pesticides present significant threats to civilian and military populations. OP compounds include the nefarious G and V chemical nerve agents, but more commonly, civilians are exposed to less toxic OP pesticides, resulting in the same negative toxicological effects and thousands of deaths on an annual basis. After decades of research, no new therapeutics have been realized since the mid-1900s. Upon phosphylation of the catalytic serine residue, a process known as inhibition, there is an accumulation of acetylcholine (ACh) in the brain synapses and neuromuscular junctions, leading to a cholinergic crisis and eventually death. Oxime nucleophiles can reactivate select OP-inhibited acetylcholinesterase (AChE). Yet, the fields of reactivation of AChE and butyrylcholinesterase encounter additional challenges as broad-spectrum reactivation of either enzyme is difficult. Additional problems include the ability to cross the blood brain barrier (BBB) and to provide therapy in the central nervous system. Yet another complication arises in a competitive reaction, known as aging, whereby OP-inhibited AChE is converted to an inactive form, which until very recently, had been impossible to reverse to an active, functional form. Evaluations of uncharged oximes and other neutral nucleophiles have been made. Non-oxime reactivators, such as aromatic general bases and Mannich bases, have been developed. The issue of aging, which generates an anionic phosphylated serine residue, has been historically recalcitrant to recovery by any therapeutic approach-that is, until earlier this year. Mannich bases not only serve as reactivators of OP-inhibited AChE, but this class of compounds can also recover activity from the aged form of AChE, a process referred to as resurrection. This review covers the modern efforts to address all of these issues and notes the complexities of therapeutic development along these different lines of research.
We designed, synthesized and screened a library of analogs of the organophosphate pesticide metabolite paraoxon against a recombinant variant of human serum paraoxonase-1. Alterations of both the aryloxy leaving group and the retained alkyl chains of paraoxon analogs resulted in substantial changes to binding and hydrolysis, as measured directly by spectrophotometric methods or in competition experiments with paraoxon. Increases or decreases in the steric bulk of the retained groups generally reduced the rate of hydrolysis, while modifications of the leaving group modulated both binding and turnover. Studies on the hydrolysis of phosphoryl azide analogs as well as amino-modified paraoxon analogs, the former being developed as photo-affinity labels, found enhanced tolerance of structural modifications, when compared with O-alkyl substituted molecules. Results from computational modeling predict a predominant active site binding mode for these molecules which is consistent with several proposed catalytic mechanisms in the literature, and from which a molecular-level explanation of the experimental trends is attempted. Overall, the results of this study suggest that while paraoxonase-1 is a promiscuous enzyme, there are substantial constraints in the active site pocket, which may relate to both the leaving group and the retained portion of paraoxon analogs.
        
Title: Butyrylcholinesterase and G116H, G116S, G117H, G117N, E197Q and G117H/E197Q mutants: a molecular dynamics study Vyas S, Beck JM, Xia S, Zhang J, Hadad CM Ref: Chemico-Biological Interactions, 187:241, 2010 : PubMed
Butyrylcholinesterase (BuChE) is a stoichiometric bioscavenger against organophosphorus (OP) nerve agent poisoning, and efforts to make BuChE variants that are catalytically active against a wide spectrum of nerve agents have been ongoing for the last decade. In order to understand the structural consequences for BuChE, we carried out extensive molecular dynamics (MD) simulations on wild-type BuChE (PDB ID: 1P0I) and several known and new variants of this enzyme, but without the presence of any ligand in the active site. The MD simulations on WT-BuChE identified two labile orientations for the catalytic serine, and also showed the likelihood of a backdoor. Upon changes at the G116 position, severe alterations around the active site region were identified. Simulations on both G117H and G117N variants showed the existence of a bound water molecule that is in close proximity to S198. Modeling of the E197Q mutant suggested that Q197 can be in two distinct orientations, one similar to the E202Q-AChE crystal structure and another in proximity to G439 and E441. The double mutant, G117H/E197Q, was found to have structural characteristics of both G117H and E197Q. In light of the computational results, previous experimental observations are discussed.
Both G and V type nerve agents possess a center of chirality about phosphorus. The S(p) enantiomers are generally more potent inhibitors than their R(p) counterparts toward acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). To develop model compounds with defined centers of chirality that mimic the target nerve agent structures, we synthesized both the S(p) and the R(p) stereoisomers of two series of G type nerve agent model compounds in enantiomerically enriched form. The two series of model compounds contained identical substituents on the phosphorus as the G type agents, except that thiomethyl (CH(3)-S-) and thiocholine [(CH(3))(3)NCH(2)CH(2)-S-] groups were used to replace the traditional nerve agent leaving groups (i.e., fluoro for GB, GF, and GD and cyano for GA). Inhibition kinetic studies of the thiomethyl- and thiocholine-substituted series of nerve agent model compounds revealed that the S(p) enantiomers of both series of compounds showed greater inhibition potency toward AChE and BChE. The level of stereoselectivity, as indicated by the ratio of the bimolecular inhibition rate constants between S(p) and R(p) enantiomers, was greatest for the GF model compounds in both series. The thiocholine analogues were much more potent than the corresponding thiomethyl analogues. With the exception of the GA model compounds, both series showed greater potency against AChE than BChE. The stereoselectivity (i.e., S(p) > R(p)), enzyme selectivity, and dynamic range of inhibition potency contributed from these two series of compounds suggest that the combined application of these model compounds will provide useful research tools for understanding interactions of nerve agents with cholinesterase and other enzymes involved in nerve agent and organophosphate pharmacology. The potential of and limitations for using these model compounds in the development of biological therapeutics against nerve agent toxicity are also discussed.
        
Title: Reactivation of model cholinesterases by oximes and intermediate phosphyloximes: a computational study Vyas S, Hadad CM Ref: Chemico-Biological Interactions, 175:187, 2008 : PubMed
Phosphyloximes (POX) are generated upon the reactivation of organophosphorus (OP)-inhibited cholinesterases (ChEs) by pyridinium oximes. These POXs are known to be potent inhibitors of the ChEs following reactivation. However, they can also decompose to give an OP derivative and a cyano derivative of the oxime when a base abstracts the benzylic proton. Using density functional theory, thermodynamic properties were calculated for the reactivation and decomposition pathways of three different oximes (2-PAM, 3-PAM and 4-PAM) with six different OPs (cyclosarin, paraoxon, sarin, tabun, VR and VX). For reactivation purposes, 2-PAM is predicted to be more efficient than 3- and 4-PAM. Based on atomic charges and relative energies, 2-POXs were found to be more inclined towards the decomposition process.
        
Title: Increase in acetylcholine concentrations in the brain of 'old' rats following treatment with pyrithioxin (Encephabol) Martin KJ, Vyas S Ref: British Journal of Pharmacology, 90:561, 1987 : PubMed
Treatment of old rats, for two to three weeks, with pyrithioxin led to an increase in the levels of endogenous acetylcholine (ACh) in the cortex and the striatum but not in the hippocampus. Pretreatment of old rats with pyrithioxin also increased the resting release and the K+ stimulated release of radioactive ACh from brain slices in vitro.