Title: Reconstruction of evolutionary changes in fat and toxin consumption reveals associations with gene losses in mammals: a case study for the lipase inhibitor PNLIPRP1 and the xenobiotic receptor NR1I3 Wagner F, Ruf I, Lehmann T, Hofmann R, Ortmann S, Schiffmann C, Hiller M, Stefen C, Stuckas H Ref: J Evol Biol, :, 2021 : PubMed
The inactivation of ancestral protein-coding genes (gene loss) can be associated with phenotypic modifications. Within placental mammals, repeated losses of PNLIPRP1 (gene inhibiting fat digestion) occurred preferentially in strictly herbivorous species, while repeated NR1I3 losses (gene involved in detoxification) occurred preferentially in strictly carnivorous species. It was hypothesized that lower fat contents of herbivorous diets and lower toxin contents of carnivorous diets cause relaxed selection pressure on these genes resulting in the accumulation of mutations and ultimately to convergent gene losses. However, since herbivorous and carnivorous diets differ vastly in their composition, a fine-grained analysis is required for hypothesis testing. We generated a trait matrix recording diet and semi-quantitative estimates of fat and toxin consumption for 52 placental species. By including data from 31 fossil taxa, we reconstructed the ancestral diets in major lineages (grundplan reconstruction). We found support that PNLIPRP1 loss is primarily associated with low levels of fat intake and not simply with herbivory/carnivory. In particular, PNLIPRP1 loss also occurred in carnivorous lineages feeding on a fat-poor diet, suggesting that the loss of this gene may be beneficial for occupying ecological niches characterized by fat-poor food resources. Similarly, we demonstrated that carnivorous species are indeed less exposed to diet-related toxins suggesting that the loss of NR1I3 and related genes (NR1I2, UGT1A6) resulted from relaxed selection pressure. This study illustrates the need of detailed phenotype studies to obtain a deeper understanding of factors underlying gene losses and to progress in understanding genomic causes of phenotypic variation in mammals.
        
Title: The PHA Depolymerase Engineering Database: A systematic analysis tool for the diverse family of polyhydroxyalkanoate (PHA) depolymerases Knoll M, Hamm TM, Wagner F, Martinez V, Pleiss J Ref: BMC Bioinformatics, 10:89, 2009 : PubMed
BACKGROUND: Polyhydroxyalkanoates (PHAs) can be degraded by many microorganisms using intra- or extracellular PHA depolymerases. PHA depolymerases are very diverse in sequence and substrate specificity, but share a common alpha/beta-hydrolase fold and a catalytic triad, which is also found in other alpha/beta-hydrolases. RESULTS: The PHA Depolymerase Engineering Database (DED, http://www.ded.uni-stuttgart.de) has been established as a tool for systematic analysis of this enzyme family. The DED contains sequence entries of 587 PHA depolymerases, which were assigned to 8 superfamilies and 38 homologous families based on their sequence similarity. For each family, multiple sequence alignments and profile hidden Markov models are provided, and functionally relevant residues are annotated. CONCLUSION: The DED is a valuable tool which can be applied to identify new PHA depolymerase sequences from complete genomes in silico, to classify PHA depolymerases, to predict their biochemical properties, and to design enzyme variants with improved properties.