Darapladib, a lipoprotein-associated phospholipase A2 (Lp-PLA2) inhibitor, failed to demonstrate efficacy for the primary endpoints in two large phase III cardiovascular outcomes trials, one in stable coronary heart disease patients (STABILITY) and one in acute coronary syndrome (SOLID-TIMI 52). No major safety signals were observed but tolerability issues of diarrhea and odor were common (up to 13%). We hypothesized that genetic variants associated with Lp-PLA2 activity may influence efficacy and tolerability and therefore performed a comprehensive pharmacogenetic analysis of both trials. We genotyped patients within the STABILITY and SOLID-TIMI 52 trials who provided a DNA sample and consent (n = 13,577 and 10,404 respectively, representing 86% and 82% of the trial participants) using genome-wide arrays with exome content and performed imputation using a 1000 Genomes reference panel. We investigated baseline and change from baseline in Lp-PLA2 activity, two efficacy endpoints (major coronary events and myocardial infarction) as well as tolerability parameters at genome-wide and candidate gene level using a meta-analytic approach. We replicated associations of published loci on baseline Lp-PLA2 activity (APOE, CELSR2, LPA, PLA2G7, LDLR and SCARB1) and identified three novel loci (TOMM5, FRMD5 and LPL) using the GWAS-significance threshold P<=5E-08. Review of the PLA2G7 gene (encoding Lp-PLA2) within these datasets identified V279F null allele carriers as well as three other rare exonic null alleles within various ethnic groups, however none of these variants nor any other loci associated with Lp-PLA2 activity at baseline were associated with any of the drug response endpoints. The analysis of darapladib efficacy endpoints, despite low power, identified six low frequency loci with main genotype effect (though with borderline imputation scores) and one common locus (minor allele frequency 0.24) with genotype by treatment interaction effect passing the GWAS-significance threshold. This locus conferred risk in placebo subjects, hazard ratio (HR) 1.22 with 95% confidence interval (CI) 1.11-1.33, but was protective in darapladib subjects, HR 0.79 (95% CI 0.71-0.88). No major loci for tolerability were found. Thus, genetic analysis confirmed and extended the influence of lipoprotein loci on Lp-PLA2 levels, identified some novel null alleles in the PLA2G7 gene, and only identified one potentially efficacious subgroup within these two large clinical trials.
BACKGROUND: Lipoprotein-associated phospholipase A(2) (Lp-PLA(2)) has been implicated in development of atherosclerosis; however, recent randomized trials of Lp-PLA(2) inhibition reported no beneficial effects on vascular diseases. In East Asians, a loss-of-function variant in the PLA2G7 gene can be used to assess the effects of genetically determined lower Lp-PLA(2) METHODS: PLA2G7 V279F (rs76863441) was genotyped in 91 428 individuals randomly selected from the China Kadoorie Biobank of 0.5 M participants recruited in 2004-08 from 10 regions of China, with 7 years' follow-up. Linear regression was used to assess effects of V279F on baseline traits. Logistic regression was conducted for a range of vascular and non-vascular diseases, including 41 ICD-10 coded disease categories. RESULTS: PLA2G7 V279F frequency was 5% overall (range 3-7% by region), and 9691 (11%) participants had at least one loss-of-function variant. V279F was not associated with baseline blood pressure, adiposity, blood glucose or lung function. V279F was not associated with major vascular events [7141 events; odds ratio (OR) = 0.98 per F variant, 95% confidence interval (CI) 0.90-1.06] or other vascular outcomes, including major coronary events (922 events; 0.96, 0.79-1.18) and stroke (5967 events; 1.00, 0.92-1.09). Individuals with V279F had lower risks of diabetes (7031 events; 0.91, 0.84-0.98) and asthma (182 events; 0.53, 0.28-0.98), but there was no association after adjustment for multiple testing. CONCLUSIONS: Lifelong lower Lp-PLA(2) activity was not associated with major risks of vascular or non-vascular diseases in Chinese adults. Using functional genetic variants in large-scale prospective studies with linkage to a range of health outcomes is a valuable approach to inform drug development and repositioning.
BACKGROUND: The Asia-specific PLA2G7 994G-T transversion leads to V279F substitution within the lipoprotein-associated phospholipase-A2 (Lp-PLA(2)) and to absence of enzyme activity in plasma. This variant offers a unique natural experiment to assess the role of Lp-PLA(2) in the pathogenesis of coronary artery disease (CAD) in humans. Given conflicting results from mostly small studies, a large two-stage case-control study was warranted. METHODOLOGY/PRINCIPAL FINDINGS: PLA2G7 V279F genotypes were initially compared in 2890 male cases diagnosed with CAD before age 60 with 3128 male controls without CAD at age 50 and above and subsequently in a second independent male dataset of 877 CAD cases and 1230 controls. In the first dataset, the prevalence of the 279F null allele was 11.5% in cases and 12.8% in controls. After adjustment for age, body mass index, diabetes, smoking, glucose and lipid levels, the OR (95% CI) for CAD for this allele was 0.80 (0.66-0.97, p = 0.02). The results were very similar in the second dataset, despite lower power, with an allele frequency of 11.2% in cases and 12.5% in controls, leading to a combined OR of 0.80 (0.69-0.92), p = 0.002. The magnitude and direction of this genetic effect were fully consistent with large epidemiological studies on plasma Lp-PLA(2) activity and CAD risk. CONCLUSIONS: Natural deficiency in Lp-PLA(2) activity due to carriage of PLA2G7 279F allele protects from CAD in Korean men. These results provide evidence for a causal relationship between Lp-PLA(2) and CAD, and support pharmacological inhibition of this enzyme as an innovative way to prevent CAD.