Enantioconvergent hydrolysis by epoxide hydrolase is a promising method for the synthesis of important vicinal diols. However, the poor regioselectivity of the naturally occurring enzymes results in low enantioconvergence in the enzymatic hydrolysis of styrene oxides. Herein, modulated residue No. 263 was redesigned based on structural information and a smart variant library was constructed by site-directed modification using an "optimized amino acid alphabet' to improve the regioselectivity of epoxide hydrolase from Vigna radiata (VrEH2). The regioselectivity coefficient (r) of variant M263Q for the R-isomer of meta-substituted styrene oxides was improved 40-63-fold, and variant M263V also exhibited higher regioselectivity towards the R-isomer of para-substituted styrene oxides compared with the wild type, which resulted in improved enantioconvergence in hydrolysis of styrene oxide scaffolds. Structural insight showed the crucial role of residue No. 263 in modulating the substrate binding conformation by altering the binding surroundings. Furthermore, increased differences in the attacking distance between nucleophilic residue Asp101 and the two carbon atoms of the epoxide ring provided evidence for improved regioselectivity. Several high-value vicinal diols were readily synthesized (>88% yield, 90%-98% ee) by enantioconvergent hydrolysis using the reprogrammed variants. These findings provide a successful strategy for enhancing the enantioconvergence of native epoxide hydrolases through key single-site mutation and more powerful enzyme tools for the enantioconvergent hydrolysis of styrene oxide scaffolds into single (R)-enantiomers of chiral vicinal diols.
        
Title: A High-Throughput Screening Method for the Directed Evolution of Hydroxynitrile Lyase towards Cyanohydrin Synthesis Zheng YC, Ding LY, Jia Q, Lin Z, Hong R, Yu HL, Xu JH Ref: Chembiochem, 22:996, 2021 : PubMed
Chiral cyanohydrins are useful intermediates in the pharmaceutical and agricultural industries. In nature, hydroxynitrile lyases (HNLs) are a kind of elegant tool for enantioselective hydrocyanation of carbonyl compounds. However, currently available methods for demonstrating hydrocyanation are still stalled at precise, but low-throughput, GC or HPLC analyses. Herein, we report a chromogenic high-throughput screening (HTS) method that is feasible for the cyanohydrin synthesis reaction. This method was highly anti-interference and sensitive, and could be used to directly profile the substrate scope of HNLs either in cell-free extract or fermentation clear broth. This HTS method was also validated by generating new variants of PcHNL5 that presented higher catalytic efficiency and stronger acidic tolerance in variant libraries.
        
Title: Structural investigation of the enantioselectivity and thermostability mechanisms of esterase RhEst1 Chen Q, Yu HL, Cheng X, Xu JH Ref: J Mol Graph Model, 85:182, 2018 : PubMed
The esterase RhEst1 can catalyze the asymmetric hydrolysis of ethyl (+/-)-2,2-dimethylcyclopropane carboxylate (DmCpCe), yielding a pharmaceutically relevant (S)-carboxylic acid. A triple mutant RhEst1A147I/V148F/G254A showed a 5-fold increase in the catalytic activity but a significant decrease in the enantioselectivity. Further optimization studies led to a new enzyme with an additional A143T mutation, which showed both increased catalytic activity and recovered enantioselectivity as well as improved thermostability. To reveal the detailed structural mechanisms for these improved properties, we performed all-atom molecular dynamics simulations on the wild type and two mutants A147I/V148F/G254A and A143T/A147I/V148F/G254A RhEst1, in complex with R-DmCpCe and S-DmCpCe substrates, respectively. The structural stability of the enzyme variants was investigated with the residue interaction network analysis. In RhEst1M2, S-DmCpCe was observed to adopt a more "activated" conformation than R-DmCpCe, with the active site residues better prearranged for the reaction, leading to the improved enantioselectivity towards S-DmCpCe. The mutations in the two mutants, especially A143T, could lead to different motion patterns in the cap domain, thus affecting the structure of the substrate entrance tunnel. The residue interaction networks analysis showed an increased number of interactions in RhEst1M1 and RhEst1M2 as compared to the wild type enzyme, especially the pi-pi stacking interactions between Phe148 and the nearby residues, providing an explanation for the increased thermostability of the two mutant enzymes observed experimentally. Our work provides essential molecular insights into the substrate binding, enantioselectivity and structural stability of esterase RhEst1, which will facilitate the development of more efficient RhEst1 variants for pharmaceutical applications.
An epoxide hydrolase from Vigna radiata (VrEH2) affords partial enantioconvergence (84% ee) in the enzymatic hydrolysis of racemic p-nitrostyrene oxide (pNSO), mainly due to insufficient regioselectivity for the (S)-enantiomer (rS = alphaS/betaS = 7.3). To improve the (S)-pNSO regioselectivity, a small but smart library of VrEH2 mutants was constructed by substituting each of four key residues lining the substrate binding site with a simplified amino acid alphabet of Val, Asn, Phe, and Trp. Among the mutants, M263N attacked almost exclusively at Calpha in the (S)-epoxide ring with satisfactory regioselectivity (rS = 99.0), without compromising the original high regioselectivity for the (R)-epoxide (rR = 99.0), resulting in near-perfect enantioconvergence (>99% analytical yield, 98% ee). Structural and conformational analysis showed that the introduced Asn263 formed additional hydrogen bonds with the nitro group in substrate, causing a shift in the substrate binding pose. This shift increased the difference in attacking distances between Calpha and Cbeta, leading to an improved regiopreference toward (S)-pNSO and affording near-perfect enantioconvergence.
Catalytic promiscuity is a useful, but accidental, enzyme property, so finding catalytically promiscuous enzymes in nature is inefficient. Some ancestral enzymes were branch points in the evolution of new enzymes and are hypothesized to have been promiscuous. To test the hypothesis that ancestral enzymes were more promiscuous than their modern descendants, we reconstructed ancestral enzymes at four branch points in the divergence hydroxynitrile lyases (HNL's) from esterases approximately 100 million years ago. Both enzyme types are alpha/beta-hydrolase-fold enzymes and have the same catalytic triad, but differ in reaction type and mechanism. Esterases catalyze hydrolysis via an acyl enzyme intermediate, while lyases catalyze an elimination without an intermediate. Screening ancestral enzymes and their modern descendants with six esterase substrates and six lyase substrates found higher catalytic promiscuity among the ancestral enzymes (P < 0.01). Ancestral esterases were more likely to catalyze a lyase reaction than modern esterases, and the ancestral HNL was more likely to catalyze ester hydrolysis than modern HNL's. One ancestral enzyme (HNL1) along the path from esterase to hydroxynitrile lyases was especially promiscuous and catalyzed both hydrolysis and lyase reactions with many substrates. A broader screen tested mechanistically related reactions that were not selected for by evolution: decarboxylation, Michael addition, gamma-lactam hydrolysis and 1,5-diketone hydrolysis. The ancestral enzymes were more promiscuous than their modern descendants (P = 0.04). Thus, these reconstructed ancestral enzymes are catalytically promiscuous, but HNL1 is especially so.
        
Title: Rational selection of circular permutation sites in characteristic regions of the alpha/beta-hydrolase fold enzyme RhEst1 Li FL, Luan ZJ, Chen Q, Xu JH, Yu HL Ref: J Mol Catal B Enzym, 125:75, 2016 : PubMed
Circular permutation (CP) involves the cleavage of polypeptide to obtain new termini, which can result in different protein structures and functions. It has been demonstrated to be an effective strategy for the evolution of proteins, but the lack of principle for selecting CP site to construct functional variants is still a challenge for CP. In this study we performed the CP analysis of the typical esterase RhEst1 to explore the CP site-selection strategy of the alpha/beta-hydrolase fold family. A CP library of 97 mutants was generated to identify the effect of CP on three characteristic regions of RhEstl including the flexible cap domain (Region 1), the region around the entrance to substrate binding pocket (Region 2) and the surface exposed sectors in catalytic domain (Region 3). We found the protein folding, stability and bioactivity of CP variants were altered significantly and the CP sites of active variants were mainly located in the flexible loops. These studies reveal the importance of site-selection for CP and provide more information for CP of other alpha/beta-hydrolases. (C) 2016 Elsevier B.V. All rights reserved.
        
Title: Dramatically Improved Performance of an Esterase for Cilastatin Synthesis by Cap Domain Engineering Luan ZJ, Yu HL, Ma BD, Qi YK, Chen Q, Xu JH Ref: Ind. Eng. Chem. Res, 55:12167, 2016 : PubMed
Whole-protein random mutation and substrate tunnel evolution have recently been applied to the pharmaceutically relevant esterase RhEst1 for the synthesis of a cilastatin precursor. The mutant RhEst1 M1(=RhEst1 A147I/V148F/G254A) was identified from a large library consisting of 1.5 10 4 variants. Though the activity of this mutant was improved 5-fold, the enantioselectivity for biohydrolysis decreased at the same time. Herein a smart library (3.0 10 3) focused on the cap doman of Rh Est1 was constructed to improve its catalytic performance comprehensively. As a result, a variant designated as Rh Est1 M2 (=RhEst1M1 A143T), showed a 6-fold increase in specific activity compared with the wild type. Meanwhile, the decreased enantioselectivity for enzymatic resolution was recovered to the native enzyme level. The melting temperature of Rh Est1 M2was nearly 11C higher than that of the wild type. This work provides detailed insight into the vitalrole of alpha/beta hydrolase cap domains in influencing all aspects of enzyme characteristics. Furthermore, the commercial resin ESR-1 with free amino groups was used for enzyme immobilization to enhance the operational performance of Rh Est1 M2. No obvious activity loss was observed when the immobilized enzyme was incubated at 30C for 200 h. The immobilized enzyme could be repeatedly used for up to 20 batches, and the total turnover number (TTN) reached up to 8.0 10 5
The means by which superfamilies of specialized enzymes arise by gene duplication and functional divergence are poorly understood. The escape from adaptive conflict hypothesis, which posits multiple copies of a gene encoding a primitive inefficient and highly promiscuous generalist ancestor, receives support from experiments showing that resurrected ancestral enzymes are indeed more substrate-promiscuous than their modern descendants. Here, we provide evidence in support of an alternative model, the innovation-amplification-divergence hypothesis, which posits a single-copied ancestor as efficient and specific as any modern enzyme. We argue that the catalytic mechanisms of plant esterases and descendent acetone cyanohydrin lyases are incompatible with each other (e.g., the reactive substrate carbonyl must bind in opposite orientations in the active site). We then show that resurrected ancestral plant esterases are as catalytically specific as modern esterases, that the ancestor of modern acetone cyanohydrin lyases was itself only very weakly promiscuous, and that improvements in lyase activity came at the expense of esterase activity. These observations support the innovation-amplification-divergence hypothesis, in which an ancestor gains a weak promiscuous activity that is improved by selection at the expense of the ancestral activity, and not the escape from adaptive conflict in which an inefficient generalist ancestral enzyme steadily loses promiscuity throughout the transition to a highly active specialized modern enzyme.
        
Title: Molecular dynamics investigation of the substrate binding mechanism in carboxylesterase Chen Q, Luan ZJ, Cheng X, Xu JH Ref: Biochemistry, 54:1841, 2015 : PubMed
A recombinant carboxylesterase, cloned from Pseudomonas putida and designated as rPPE, is capable of catalyzing the bioresolution of racemic 2-acetoxy-2-(2'-chlorophenyl)acetate (rac-AcO-CPA) with excellent (S)-enantioselectivity. Semirational design of the enzyme showed that the W187H variant could increase the activity by approximately 100-fold compared to the wild type (WT) enzyme. In this study, we performed all-atom molecular dynamics (MD) simulations of both apo-rPPE and rPPE in complex with (S)-AcO-CPA to gain insights into the origin of the increased catalysis in the W187H mutant. Our results show differential binding of (S)-AcO-CPA in the WT and W187H enzymes, especially the interactions of the substrate with the two active site residues Ser159 and His286. The replacement of Trp187 by His leads to considerable structural rearrangement in the active site of W187H. Unlike in the WT rPPE, the cap domain in the W187 mutant shows an open conformation in the simulations of both apo and substrate-bound enzymes. This open conformation exposes the catalytic triad to the solvent through a water accessible channel, which may facilitate the entry of the substrate and/or the exit of the product. Binding free energy calculations confirmed that the substrate binds more strongly in W187H than in WT. On the basis of these computational results, we further predicted that the mutations W187Y and D287G might also be able to increase the substrate binding and thus improve the enzyme's catalytic efficiency. Experimental binding and kinetic assays on W187Y and D287G show improved catalytic efficiency over WT, but not W187H. Contrary to our prediction, W187Y shows slightly decreased substrate binding coupled with a 100-fold increase in turnover rate, while in D287G the substrate binding is 8 times stronger but with a slightly reduced turnover rate. Our work provides important molecular-level insights into the binding of the (S)-AcO-CPA substrate to carboxylesterase rPPEs, which will help guide future development of more efficient rPPE variants.
        
Title: Rational design of a carboxylic esterase RhEst1 based on computational analysis of substrate binding Chen Q, Luan ZJ, Yu HL, Cheng X, Xu JH Ref: J Mol Graph Model, 62:319, 2015 : PubMed
A new carboxylic esterase RhEst1 which catalyzes the hydrolysis of (S)-(+)-2,2-dimethylcyclopropanecarboxylate (S-DmCpCe), the key chiral building block of cilastatin, was identified and subsequently crystallized in our previous work. Mutant RhEst1A147I/V148F/G254A was found to show a 5-fold increase in the catalytic activity. In this work, molecular dynamic simulations were performed to elucidate the molecular determinant of the enzyme activity. Our simulations show that the substrate binds much more strongly in the A147I/V148F/G254A mutant than in wild type, with more hydrogen bonds formed between the substrate and the catalytic triad and the oxyanion hole. The OH group of the catalytic residue Ser101 in the mutant is better positioned to initiate the nucleophilic attack on S-DmCpCe. Interestingly, the "170-179" loop which is involved in shaping the catalytic sites and facilitating the product release shows remarkable dynamic differences in the two systems. Based on the simulation results, six residues were identified as potential "hot-spots" for further experimental testing. Consequently, the G126S and R133L mutants show higher catalytic efficiency as compared with the wild type. This work provides molecular-level insights into the substrate binding mechanism of carboxylic esterase RhEst1, facilitating future experimental efforts toward developing more efficient RhEst1 variants for industrial applications.
The esterase RhEst1 from Rhodococcus sp. ECU1013 has been reported for the enantioselective hydrolysis of ethyl (S)-(+)-2,2-dimethylcyclopropane carboxylate, producing the building block of cilastatin. In this work, error-prone PCR and site-directed saturation mutagenesis were applied to RhEst1 for activity improvement, with the pH-indicator assay as a high-throughput screening method. As a result, RhEst1A147I/V148F/G254A, with mutations surrounding the substrate access channel, showed a 5-fold increase in its specific activity compared with the native enzyme, as well as a 4-fold increase in protein solubility. Combined with the determination of protein structures and computational analysis, this work shows that the amino acids around the substrate channel play a more important role in the activity evolution of RhEst1 than those in the active site.
        
Title: Cloning and Characterization of an Enantioselective l-Menthyl Benzoate Hydrolase from Acinetobacter sp. ECU2040 Yin JG, Xu GC, Zheng GW, Xu JH Ref: Appl Biochem Biotechnol, 176:1102, 2015 : PubMed
A new esterase gene abmbh, encoding a benzoate hydrolase which can enantioselectively hydrolyze l-menthyl benzoate to l-menthol, was recently identified from the genomic library of a soil isolate Acinetobacter sp. ECU2040. The abmbh gene contains a 1080-bp open reading frame encoding a protein of 360 amino acids with a calculated molecular mass of 40.7 kDa. The corresponding enzyme AbMBH was functionally expressed in Escherichia coli BL21 (DE3), purified, and characterized. The AbMBH displayed the maximum activity towards p-nitrophenyl butyrate at 50 degrees C, and an optimum pH of 8.5. A K M of 2.6 mM and a k cat of 0.26 s(-1) were observed towards dl-menthyl benzoate. The AbMBH exhibited a moderate enantioselectivity (E = 27.5) towards dl-menthyl benzoate. It can also catalyze the enantioselective hydrolysis of a variety of racemic menthyl esters, including dl-menthyl acetate, dl-menthyl chloroacetate, and dl-menthyl butyrate.
        
Title: Crystal structures of Pseudomonas putida esterase reveal the functional role of residues 187 and 287 in substrate binding and chiral recognition Dou S, Kong XD, Ma BD, Chen Q, Zhang J, Zhou J, Xu JH Ref: Biochemical & Biophysical Research Communications, 446:1145, 2014 : PubMed
A recombinant carboxylesterase (rPPE) from Pseudomonas putida ECU1011 was previously cloned and engineered to give a potential application for resolving chiral alpha-hydroxy acids including mandelic acids and derivatives. Two variants rPPEW187H and rPPED287A showed a approximately 100-fold increase in activity towards rac-2-acetoxy-2-(2'-chlorophenyl) acetate (rac-AcO-CPA), but rPPED287A had a significant decrease in enantioselectivity (E=8.7) compared to rPPEW187H and the wild-type rPPE (rPPEWT) (E>200). Here we report the crystal structures of rPPEWT and rPPEW187H, both by themselves and in complex with the substrate, to elucidate the structural basis of this phenomenon. An inactive mutation of nucleophile residue S159A was introduced to obtain the structure of rPPES159A/W187H complexed with (S)-AcO-CPA. The structural analysis reveals that the side chain of residue Asp287 in rPPEWT would have a potential steric conflict with (S)-AcO-CPA when the substrate binds at the active site of the enzyme. However, the mutation W187H could facilitate the relocation of Asp287, while D287A directly eliminates the hindrance of Asp287, both of which offer sufficient space for the binding and hydrolysis of substrate. Moreover, Asp287 generates one site of the "three-point attachment model" as a hydrogen-bond donor that determines the excellent enantioselectivity of rPPE in chiral recognition, and D287A would obviously destroy the hydrogen bond and result in the low enantioselectivity of rPPED287A.
        
Title: A Smart Library of Epoxide Hydrolase Variants and the Top Hits for Synthesis of (S)-beta-Blocker Precursors Kong XD, Ma Q, Zhou J, Zeng BB, Xu JH Ref: Angew Chem Int Ed Engl, 53:6641, 2014 : PubMed
Microtuning of the enzyme active pocket has led to a smart library of epoxide hydrolase variants with an expanded substrate spectrum covering a series of typical beta-blocker precursors. Improved activities of 6- to 430-fold were achieved by redesigning the active site at two predicted hot spots. This study represents a breakthrough in protein engineering of epoxide hydrolases and resulted in enhanced activity toward bulky substrates.
        
Title: Engineering of an epoxide hydrolase for efficient bioresolution of bulky pharmaco substrates Kong XD, Yuan S, Li L, Chen S, Xu JH, Zhou J Ref: Proc Natl Acad Sci U S A, 111:15717, 2014 : PubMed
Optically pure epoxides are essential chiral precursors for the production of (S)-propranolol, (S)-alprenolol, and other beta-adrenergic receptor blocking drugs. Although the enzymatic production of these bulky epoxides has proven difficult, here we report a method to effectively improve the activity of BmEH, an epoxide hydrolase from Bacillus megaterium ECU1001 toward alpha-naphthyl glycidyl ether, the precursor of (S)-propranolol, by eliminating the steric hindrance near the potential product-release site. Using X-ray crystallography, mass spectrum, and molecular dynamics calculations, we have identified an active tunnel for substrate access and product release of this enzyme. The crystal structures revealed that there is an independent product-release site in BmEH that was not included in other reported epoxide hydrolase structures. By alanine scanning, two mutants, F128A and M145A, targeted to expand the potential product-release site displayed 42 and 25 times higher activities toward alpha-naphthyl glycidyl ether than the wild-type enzyme, respectively. These results show great promise for structure-based rational design in improving the catalytic efficiency of industrial enzymes for bulky substrates.
        
Title: Essential Role of Gly33 in a Novel Organic Solvent-Tolerant Lipase from Serratia marcescens ECU1010 as Determined by Site-Directed Mutagenesis Li SX, Ma Q, Lin K, Wu JJ, Wu YX, Xu JH Ref: Appl Biochem Biotechnol, 172:2945, 2014 : PubMed
A novel lipase lipB from Serratia marcescens ECU1010 is highly stable in the presence of organic solvents. By sequence and structure comparison with homologous lipase lipA, three amino acid residues were found to be different between them. To identify the residues which increase the organic solvent stability of lipB, residues that potentially provide this stability were mutated to the ones of lipA at equivalent positions. The replacement of Gly at position 33 by Asp obviously decreased its stability in organic solvents. Molecular modeling and structural analysis also suggested that the Gly33 residue is important for the organic solvent stability of lipB.
        
Title: Increased Catalyst Productivity in alpha-Hydroxy Acids Resolution by Esterase Mutation and Substrate Modification Ma BD, Kong XD, Yu HL, Zhang ZJ, Dou S, Xu YP, Ni Y, Xu JH Ref: ACS Catal, 4:1026, 2014 : PubMed
Optically pure alpha-hydroxy acids and their derivatives are versatile chiral building blocks in the pharmaceutical industry. In this study, the potential of a recombinant Pseudomonas putida esterase (rPPE01) for the enzymatic resolution of -acetoxy acids was significantly improved by combinatorial engineering of both the biocatalyst and substrate. Semirational design based on homologous modeling and molecular docking provided a single-point variant, W187H, whose kcat/KM for sodium 2-acetoxy-2-(2'-chlorophenyl)acetate (Ac-CPA-Na) was increased 100-fold, from 0.0611 to 6.20 mM-1 s-1, while retaining its excellent enantioselectivity and broad substrate spectrum. Biocatalyst deactivation under the operating conditions was decreased by using the potassium salt of Ac-CPA instead of Ac-CPA-Na. With 0.5 g L-1 of lyophilized cells containing rPPE01-W187H, 500 mM (R,S)-Ac-CPA-K was selectively deacylated with 49.9% conversion within 15 h, giving satisfactory enantiomeric excesses (ee) for both the S product (>99% ee) and the remaining R substrate (98.7% ee). Consequently, the amount of (S)-2-hydroxy-2-(2'-chlorophenyl)acetate prepared per unit weight of lyophilized cells was improved by a factor of 18.9 compared with the original productivity of the wild-type esterase. Further enzymatic resolution of other important hydroxy acids at the 100 mL scale demonstrated that the rPPE01-W187H-based bioprocess is versatile and practical for the large-scale preparation of chiral -hydroxy acids
        
Title: Newly Identified Thermostable Esterase from Sulfobacillus acidophilus: Properties and Performance in Phthalate Ester Degradation Zhang XY, Fan X, Qiu YJ, Li CY, Xing S, Zheng YT, Xu JH Ref: Applied Environmental Microbiology, 80:6870, 2014 : PubMed
EstS1, a newly identified thermostable esterase from Sulfobacillus acidophilus DSM10332, was heterologously expressed in Escherichia coli and shown to enzymatically degrade phthalate esters (PAEs) to their corresponding monoalkyl PAEs. The optimal pH and temperature of the esterase were found to be 8.0 and 70 degrees C, respectively. The half-life of EstS1 at 60 degrees C was 15 h, indicating that the enzyme had good thermostability. The specificity constant (kcat/Km) of the enzyme for p-nitrophenyl butyrate was as high as 6,770 mM(-1) s(-1). The potential value of EstS1 was demonstrated by its ability to effectively hydrolyze 35 to 82% of PAEs (10 mM) within 2 min at 37 degrees C, with all substrates being completely degraded within 24 h. At 60 degrees C, the time required for complete hydrolysis of most PAEs was reduced by half. To our knowledge, this enzyme is a new esterase identified from thermophiles that is able to degrade various PAEs at high temperatures.
        
Title: Cloning and Characterization of a Novel Esterase from Rhodococcus sp. for Highly Enantioselective Synthesis of a Chiral Cilastatin Precursor Zhang Y, Pan J, Luan ZJ, Xu GC, Park S, Xu JH Ref: Applied Environmental Microbiology, 80:7348, 2014 : PubMed
A novel nonheme chloroperoxidase (RhEst1), with promiscuous esterase activity for enantioselective hydrolysis of ethyl (S)-2,2-dimethylcyclopropanecarboxylate, was identified from a shotgun library of Rhodococcus sp. strain ECU1013. RhEst1 was overexpressed in Escherichia coli BL21(DE3), purified to homogeneity, and functionally characterized. Fingerprinting analysis revealed that RhEst1 prefers para-nitrophenyl (pNP) esters of short-chain acyl groups. pNP esters with a cyclic acyl moiety, especially that with a cyclobutanyl group, were also substrates for RhEst1. The Km values for methyl 2,2-dimethylcyclopropanecarboxylate (DmCpCm) and ethyl 2,2-dimethylcyclopropane carboxylate (DmCpCe) were 0.25 and 0.43 mM, respectively. RhEst1 could serve as an efficient hydrolase for the bioproduction of optically pure (S)-2,2-dimethyl cyclopropane carboxylic acid (DmCpCa), which is an important chiral building block for cilastatin. As much as 0.5 M DmCpCe was enantioselectively hydrolyzed into (S)-DmCpCa, with a molar yield of 47.8% and an enantiomeric excess (ee) of 97.5%, indicating an extremely high enantioselectivity (E = 240) of this novel and unique biocatalyst for green manufacturing of highly valuable chiral chemicals.
        
Title: Heterologous overexpression of Vigna radiata epoxide hydrolase in Escherichia coli and its catalytic performance in enantioconvergent hydrolysis of p-nitrostyrene oxide into (R)-p-nitrophenyl glycol Zhu QQ, He WH, Kong XD, Fan LQ, Zhao J, Li SX, Xu JH Ref: Applied Microbiology & Biotechnology, 98:207, 2014 : PubMed
Two native epoxide hydrolases (EHs) were previously discovered from mung bean powder (Vigna radiata), both of which can catalyze the enantioconvergent hydrolysis of p-nitrostyrene oxide (pNSO). In this study, the encoding gene of VrEH1 was successfully cloned from the cDNA of V. radiata by RT-PCR and rapid amplification of cDNA ends (RACE) technologies. High homologies were found to two putative EHs originated from Glycine max (80%) and Medicago truncatula (79%). The vreh1 gene constructed in pET28a(+) vector was then heterologously overexpressed in Escherichia coli BL21(DE3), and the encoded protein was purified to homogeneity by nickel affinity chromatography. It was shown that VrEH1 has an optimum activity at 45 degrees C and is very thermostable with an inactivation energy of 468 kJ mol(-1). The enzyme has no apparent requirement of metal ions for activity, and its activity was strongly inhibited by 1 mM of Ni(2+), Cu(2+), Fe(2+), or Co(2+). By adding 0.1% Triton X-100, the enzyme activity could be significantly increased up to 340%. VrEH1 shows an unusual ability of enantioconvergent catalysis for the hydrolysis of racemic pNSO, affording (R)-p-nitrophenyl glycol (pNPG). It displays opposite regioselectivity toward (S)-pNSO (83% to Calpha) in contrast to (R)-pNSO (87% to Cbeta). The K M and k cat of VrEH1 were determined to be 1.4 mM and 0.42 s(-1) for (R)-pNSO and 5.5 mM and 6.2 s(-1) for (S)-pNSO. This thermostable recombinant VrEH1 with enantioconvergency is considered to be a promising biocatalyst for the highly productive preparation of enantiopure vicinal diols and also a good model for understanding the mechanism of EH stereoselectivity.
        
Title: Enzymatic production of Cilastatin intermediate via highly enantioselective hydrolysis of methyl (+/-)-2,2-dimethylcyclopropane carboxylate using newly isolated Rhodococcus sp. ECU1013 Liu CH, Pan J, Ye Q, Xu JH Ref: Applied Microbiology & Biotechnology, 97:7659, 2013 : PubMed
(S)-(+)-2,2-Dimethylcyclopropane carboxylic acid [(S)-(+)-DMCPA] is a key chiral intermediate for production of Cilastatin, an excellent renal dehydropeptidase-I inhibitor. In this study, a new method for preparation of (S)-(+)-DMCPA with microbial esterases was investigated. A microbial screening program obtained six esterase-producing isolates that could display relatively high activities and enantioselectivities using racemic ethyl 2,2-dimethylcyclopropane carboxylate (DMCPE) as screening substrate, aiming at forming optically pure (S)-(+)-DMCPA. Further selection was carried out with substrates having different alcohol moieties, including methyl, ethyl, and 2-chloroethyl esters. Finally, one of these strains, numbered ECU1013, with high enantioselectivity toward the hydrolytic resolution of methyl 2,2-dimethylcyclopropane carboxylate (DMCPM), afforded the (S)-product in 92 % ee, and was later identified as Rhodococcus sp. According to our research, there were several active esterases to DMCPM in cells of Rhodococcus sp. ECU1013; however, (S)-preferential esterase was selectively enriched based on the time-dependent profile of esterases biosynthesis, thereby the enantiomeric excess of biotransformation product (ee p) was constantly increased, finally maintained at 95 % (S). To improve the yield, various organic solvents were employed for better dispersion of the hydrophobic substrate. As a result, (+/-)-DMCPM of up to 400 mM in the organic phase of isooctane was enantioselectively hydrolyzed into (S)-(+)-DMCPA, with an isolation yield of 38 % and a further increase of ee p to 99 %.
        
Title: A thermostable and organic-solvent tolerant esterase from Pseudomonas putida ECU1011: catalytic properties and performance in kinetic resolution of alpha-hydroxy acids Ma BD, Yu HL, Pan J, Liu JY, Ju X, Xu JH Ref: Bioresour Technol, 133:354, 2013 : PubMed
A novel esterase, rPPE01, from Pseudomonas putida ECU1011 was heterologously expressed in Escherichia coli and identified for enzymatic resolution of hydroxy acids via O-deacetylation. alpha-Acetoxy carboxylates were converted with approximately 50% yield and excellent enantioselectivity (E>200) at a substrate concentration of 100 mM. The half-lives of rPPE01 were 14 days at 50 degrees C and 30 days at 30 degrees C, indicating the enzyme has relatively high thermostability. Another remarkable advantage of rPPE01 is that both the activity and thermostability were enhanced significantly in the presence of hydrophobic alkanes and ethers. rPPE01 retained 159% of its initial activity after incubation with 50% (v/v) n-heptane at 30 degrees C for 60 days. The attractive organic-solvent tolerance, good thermostability and high enantioselectivity towards alpha-acetoxy carboxylates endow rPPE01 with the potential of practical application for the production of enantiopure hydroxy acids.
        
Title: Isolation and biochemical characterization of two novel metagenome-derived esterases Ouyang LM, Liu JY, Qiao M, Xu JH Ref: Appl Biochem Biotechnol, 169:15, 2013 : PubMed
Environmental DNA from soil and water samples was extracted to construct a plasmid library and a fosmid library containing 19,500 and 20,400 clones, respectively. Two esterases (EstP2K and EstF4K) were finally isolated from each library based on activity screening, and both of them were characterized in this study. The esterase EstF4K consists of 396 amino acids with an SMTK motif which belongs to family VIII esterase/lipase. The amino acid sequence of EstF4K showed 83 % identity with that of EstA3, a reported esterase isolated from uncultured organisms of soil. EstP2K is composed of 224 amino acids in size and shows only 37 % identity with a putative lipase of Neisseria elongata subsp. The purified EstF4K was optimally active at pH 8.0 and 50 degrees C. It was remarkably active and very stable in the presence of 30 % dimethyl sulfoxide. Activity fingerprint of EstF4K displayed a higher level of activity toward short-chain fatty acid p-nitrophenyl (pNP) esters, while EstP2K preferred bias for pNP caprylate ester. The optimum reaction temperature and pH for EstP2K are 45 degrees C and 7.5, respectively, and the enzyme exhibited strong tolerance in the presence of 30 % methanol. EstF4K and EstP2K showed opposite enantioselectivity for methyl 3-phenylglycidate, a chiral synthon for the synthesis of Taxol(R) side chain.
        
Title: Target-oriented discovery of a new esterase-producing strain Enterobacter sp. ECU1107 for whole cell-catalyzed production of (2S,3R)-3-phenylglycidate as a chiral synthon of Taxol Zhou DJ, Pan J, Yu HL, Zheng GW, Xu JH Ref: Applied Microbiology & Biotechnology, 97:6293, 2013 : PubMed
A new strain, Enterobacter sp. ECU1107, was identified among over 200 soil isolates using a two-step screening strategy for the enantioselective synthesis of (2S,3R)-3-phenylglycidate methyl ester (PGM), a key intermediate for production of a potent anticancer drug Taxol(R). An organic-aqueous biphasic system was employed to reduce spontaneous hydrolysis of the substrate PGM and isooctane was found to be the most suitable organic solvent. The temperature and pH optima of the whole cell-mediated bioreaction were 40 degrees C and 6.0, respectively. Under these reaction conditions, the enantiomeric excess (ee(s)) of (2S,3R)-PGM recovered was greater than 99 % at approximately 50 % conversion. The total substrate loading in batch reaction could reach 600 mM. By using whole cells of Enterobacter sp. ECU1107, (2S,3R)-PGM was successfully prepared in decagram scale in a 1.0-l mechanically stirred reactor, affording the chiral epoxy ester in >99 % ee s and 43.5 % molar yield based on the initial load of racemic substrate.
        
Title: Expression and characterization of a novel lipase from Aspergillus fumigatus with high specific activity Shangguan JJ, Liu YQ, Wang FJ, Zhao J, Fan LQ, Li SX, Xu JH Ref: Appl Biochem Biotechnol, 165:949, 2011 : PubMed
A novel lipase gene from Aspergillus fumigatus, afl1-1, was cloned and expressed with a molecular mass of 38 kDa in Escherichia coli for the first time. The recombinant lipase had a preference for short carbon chain p-nitrophenyl esters, especially toward C2 p-nitrophenyl ester and exhibited potent hydrolysis activity that had not been observed. The optimum pH and temperature of this new enzyme were 8.5 and 65 degrees C, respectively. The recombinant lipase (AFL1-1) is an alkaline enzyme which was stable in the pH range 6.0 approximately 8.5 for 16 h (at 4 degrees C) and at 30 approximately 50 degrees C for 1 h. It is an intracellular enzyme which was purified approximately 8.47-fold with an overall yield of 86.1% by single-step Ni-NTA affinity purification, with a very high specific activity of approximately 1.00 x 10(3) U mg(-1) on a standard substrate of p-nitrophenyl acetate. The Michaelis-Menten kinetic parameters V (max) and K (m) of the lipase were 1.37 mM mg(-1) min(-1) and 14.0 mM, respectively. Ca(2+) and other metal ions could not activate the lipase. According to the homology analysis and site-directed mutagenesis assay, the catalytic triad of the recombinant lipase was identified as Ser-165, Asp-260, and His-290 residues.
        
Title: Bioproduction of chiral mandelate by enantioselective deacylation of alpha-acetoxyphenylacetic acid using whole cells of newly isolated Pseudomonas sp. ECU1011 Ju X, Yu HL, Pan J, Wei DZ, Xu JH Ref: Applied Microbiology & Biotechnology, 86:83, 2010 : PubMed
Substrate-directed screening was carried out to find bacteria that could deacylate O-acetylated mandelic acid from environmental samples. From more than 200 soil isolates, we identified for the first time that Pseudomonas sp. ECU1011 biocatalytically deacylated (S)-alpha-acetoxyphenylacetic acid with high enantioselectivity (E > 200), yielding (S)-mandelic acid with 98.1% enantiomeric excess (ee) at a 45.5% conversion rate. The catalytic deacylation of (S)-alpha-acetoxyphenylacetic acid by the resting cell was optimized using a single-factor method to yield temperature and pH optima of 30 degrees C and 6.5, respectively. These optima help to reduce the nonselective spontaneous hydrolysis of the racemic substrate. It was found that substrate concentrations up to 60 mM could be used. 2-Propanol was used as a moderate cosolvent to help the substrate disperse in the aqueous phase. Under optimized reaction conditions, the ee of the residual (R)-alpha-acetoxyphenylacetic acid could be improved further, to greater than 99%, at a 60% conversion rate. Furthermore, using this newly isolated strain of Pseudomonas sp. ECU1011, three kinds of optically pure analogs of (S)-mandelic acid and (R)-alpha-acetoxyphenylacetic acid were successfully prepared at high enantiomeric purity.
        
Title: Efficient production of (S)-naproxen with (R)-substrate recycling using an overexpressed carboxylesterase BsE-NP01 Liu X, Xu JH, Pan J, Zhao J Ref: Appl Biochem Biotechnol, 162:1574, 2010 : PubMed
An (S)-enantioselective esterase from Bacillus subtilis ECU0554, named BsE-NP01, has been cloned and over-expressed in a heterologous host Escherichia coli BL21. BsE-NP01 was shown to be a carboxylesterase with a molecular mass of about 32 kDa, and temperature and pH optima at 50 degrees C and 8.5, respectively. It could catalyze the selective hydrolysis of the (S)-enantiomer of racemic naproxen methyl ester, giving optically pure (S)-naproxen with 98% enantiomeric excess. A mechanic-grinding approach to substrate dispersion was also reported, which was considered to be an alternative to take the place of deleterious surfactants such as Tween-80, with improved performance of the hydrolysis reaction. Batch production of (S)-naproxen was repeatedly carried out in a solid-water biphasic system at 2-L scale, achieving an average total yield of about 85% after ten runs with complete recycling of (R)-substrate.
        
Title: Significantly improved expression and biochemical properties of recombinant Serratia marcescens lipase as robust biocatalyst for kinetic resolution of chiral ester Wang Y, Zhao J, Xu JH, Fan LQ, Li SX, Zhao LL, Mao XB Ref: Appl Biochem Biotechnol, 162:2387, 2010 : PubMed
A lipase gene from Serratia marcescens ECU1010 was cloned into expression vector pET28a, sequenced, and overexpressed as an N terminus His-tag fusion protein in Escherichia coli. Through the optimization of culture conditions in shake flask, the lipase activity was improved up to 1.09 x 10(5) U/l, which is a great improvement compared to our previous reports. It was purified to homogeneity by Ni-NTA affinity chromatography with an overall yield of 59.4% and a purification factor of 2.4-fold. This recombinant lipase displayed excellent stability below 30 degrees C and within the pH range of 5.0-6.8, giving temperature and pH optima at 40 degrees C and pH 9.0, respectively. The lipase activity was found to increase in the presence of metal ions such as Ca(2)+, Cu(2)+, and some nonionic surfactants such as PEG series. In addition, among p-nitrophenyl esters of fatty acids with varied chain length, the recombinant lipase showed the maximum activity on p-nitrophenyl laurate (C(1)(2)). Using racemic trans-3-(4'-methoxy-phenyl)-glycidyl methyl ester [(+/-)-MPGM] as substrate, which is a key chiral synthon for production of diltiazem, a 50% conversion yield was achieved after 4 h in toluene-water (100 mM KPB phosphate buffer, pH 7.5) biphasic system (5:5 ml) at 30 degrees C under shaking condition (160 rpm), affording (-)-MPGM in nearly 100% ee. The K(m) and V(max) values of the lipase for (+/-)-MPGM were 222 mM and 1.24 mmol min(-)(1) mg(-)(1), respectively. The above-mentioned features make the highly enantioselective lipase from Serratia marcescens ECU1010 a robust biocatalyst for practical use in large-scale production of diltiazem intermediate.
        
Title: Synthesis of novel salidroside esters by lipase-mediated acylation with various functional acyl groups Yu HL, Xu JH, Su JH, Lu WY, Lin GQ Ref: J Biosci Bioeng, 106:65, 2008 : PubMed
Salidroside, a natural glycoside, was enzymatically derived for the first time into novel esters using lipase as biocatalyst. The reaction system of glycoside acylation was optimized, and the effect of solvent nature, concentrations of substrate and biocatalyst, and acyl donors' structure on the acylation was studied. In the optimal system, various structures of acyl donors, either natural or unnatural, including short alkyl acyl groups, long chain acyl groups and acyl donors with aryl group were connected to molecular backbone of the glycoside, forming various structures of novel glycoside esters.
        
Title: Overexpression of Serratia marcescens lipase in Escherichia coli for efficient bioresolution of racemic ketoprofen Long ZD, Xu JH, Zhao LL, Pan J, Yang S, Hua L Ref: J Mol Catal B Enzym, 47:105, 2007 : PubMed
Lipase from Serratia marcescens ECU1010 was cloned and overexpressed in E. coli. After optimization, the maximum lipase activities reached 5000-6000 U/l and this recombinant lipase could enantioselectively hydrolyze (S)-ketoprofen esters into (S)-ketoprofen. Among six alkyl esters of racemic ketoprofen investigated, this lipase showed the best enantioselectivity for the kinetic resolution of ketoprofen ethyl ester, with an eep (enantiomeric excess of product) of 91.6% and E-value of 63 obtained at 48.2% conversion. Twelve nonionic surfactants were tested for enhancing the enantioselectivity of this lipase in the bioresolution of ketoprofen ethyl ester. A very high E-value of 1084 was achieved, with an optical purity of >99% eep and a yield of 42.6% in the presence of 3% Brij 92V. Further studies showed that the selectivity of the lipase was improved with the increase of Brij 92V concentration. The substrate (ketoprofen ethyl ester) does not inhibit the lipase activity, while the product (S)-ketoprofen inhibits the lipase activity to some extent. These results indicate that the S. marcescens lipase is very useful for biocatalytic production of chiral profens such as (S)-ketoprofen.
        
Title: Significant improvement of Serratia marcescens lipase fermentation, by optimizing medium, induction, and oxygen supply Long ZD, Xu JH, Pan J Ref: Appl Biochem Biotechnol, 142:148, 2007 : PubMed
Production of an extracellular lipase from Serratia marcescens ECU1010, which is an industrially important biocatalyst for the stereospecific synthesis of Diltiazem precursor, was carefully optimized in both shake flasks and a fermenter, using Tween-80 as the enzyme inducer. Dextrin and beef extract combined with ammonium sulfate were indicated to be the best carbon and nitrogen sources, respectively. With the increase of Tween-80 from 0 to 10 g l-1, the lipase production was greatly enhanced from merely 250 U l-1 to a maximum of 3,340 U l-1, giving the highest lipase yield of ca 640 U g-1 dry cell mass (DCW), although the maximum biomass (6.0 g DCW l-1) was achieved at 15 g l-1 of Tween-80. When the medium loading in shake flasks was reduced from 20 to 10% (v / v), the lipase production was significantly enhanced. The increase in shaking speed also resulted in an improvement of the lipase production, although the cell growth was slightly repressed, suggesting that the increase of dissolved oxygen (DO) concentration contributed to the enhancements of lipase yield. When the lipase fermentation was carried out in a 5-l fermenter, the lipase production reached a new maximum of 11,060 U l-1 by simply raising the aeration rate from 0.5 to 1.0 vvm, while keeping the dissolved oxygen above 20% saturation via intermittent adjustment of the agitation speed (> or =400 rpm), in the presence of a relatively low concentration (2 g l-1) of Tween-80 to prevent a potential foaming problem, which is easy to occur in the intensively aerated fermenter.
        
Title: Optimization of Serratia marcescens lipase production for enantioselective hydrolysis of 3-phenylglycidic acid ester Gao L, Xu JH, Li XJ, Liu ZZ Ref: J Ind Microbiol Biotechnol, 31:525, 2004 : PubMed
Lipase production and cell growth of Serratia marcescens ECU1010 were optimized in shake flasks, with lipase production being enhanced 9.5-fold (4,780 U/l) compared with the initial activity (500 U/l). Optimal carbon and nitrogen sources were Tween-80 and peptone, and the optimal ratio of Tween-80 to peptone was 1:3. The optimized cultivation conditions were 25 degrees C and pH 6.5. Lipase activity, particularly specific activity, could be improved by decreasing the cultivation temperature from 35 to 25 degrees C. Enzyme stability was significantly improved by simple immobilization with synthetic adsorption resin no. 8244. After five reaction cycles, enzyme activity decreased only very slightly, while enantioselectivity of the preparation remained constant, and the ees (enantiomeric excess of the remaining substrate) achieved in all cases was higher than 97%. The resin-8244-lipase preparation can be used for efficient enantioselective hydrolysis of trans-3-(4'-methoxyphenyl)glycidic acid methyl ester [(+/-)-MPGM], a key intermediate in the synthesis of Diltiazem.
        
Title: Integration of purification with immobilization of Candida rugosa lipase for kinetic resolution of racemic ketoprofen Liu YY, Xu JH, Wu HY, Shen D Ref: J Biotechnol, 110:209, 2004 : PubMed
The two processes for the partial purification and for the immobilization of a crude lipase preparation (Candida rugosa Lipase OF) have been successfully integrated into one by simple adsorption of the enzyme onto a cation ion exchanger resin (SP-Sephadex C-50) at pH 3.5. Due to selective removal of the unfavorable lipase isoenzyme (L1), the enzyme components (mainly L2 and L3) that are tightly fixed on the resin displayed a significantly improved enantioselectivity (E value: 50 versus 13 with addition of Tween-80) in the biocatalytic hydrolysis of 2-chloroethyl ester of rac-ketoprofen. The activity yields of the immobilized lipase were 48 and 70%, respectively when emulsified and non-emulsified substrates were employed for enzyme assay. Moreover, the concentration of Tween-80 was found to be a factor affecting the lipase enantioselectivity. By using such an immobilized enzyme as biocatalyst, the process for preparing enantiopure (S)-ketoprofen becomes simpler and more practical as compared with the previously reported procedures and the product was obtained with >94% ee at 22.3% conversion in the presence of an optimal concentration (0.5 mg/ml) of Tween-80 at pH 3.5. Furthermore, the operational stability of the immobilized biocatalyst was examined in different types of reactors. In an air-bubbled column reactor, the productivity was much higher than that in a packed-bed column reactor, in spite of a slightly lower stability. Under optimal conditions, the air-bubbled column reactor could be operated smoothly for at least 350 h, remaining nearly 50% activity.
        
Title: Biocatalytic resolution of glycidyl aryl ethers by Trichosporon loubierii : cell/substrate ratio influences the optical purity of (R) - epoxides Xu Y, Xu JH, Pan J, Tang YF Ref: Biotechnol Lett, 26:1217, 2004 : PubMed
Glycidyl aryl ethers were resolved by using lyophilized cells of Trichosporon loubierii ECU1040 having epoxide hydrolase activity. The activity and enantioselectivity depended on the structure of the aryl group. Different cell/substrate ratios also influenced the optical purity of remaining substrate. An additional stability test of the whole-cell enzyme suggests that rapid deactivation of the epoxide hydrolase was the potential reason. (R)-Epoxides were prepared in gram amounts with optical purity of 87% - 99% ee.
        
Title: Improved catalytic performance of Bacillus megaterium epoxide hydrolase in a medium containing Tween-80 Gong PF, Xu JH, Tang YF, Wu HY Ref: Biotechnol Prog, 19:652, 2003 : PubMed
A new epoxide hydrolase with high enantioselectivity toward (R)-glycidyl phenyl ether (R-GPE) was partially purified from Bacillus megaterium strain ECU1001. The maximum activity of the isolated enzyme was observed at 30 degrees C and pH 6.5 in a buffer system with 5% (v/v) of DMSO as a cosolvent. The enzyme was quite stable at pH 7.5 and retained full activity after incubation at 40 degrees C for 6 h. Interestingly, when the cosolvent DMSO was replaced by an emulsifier (Tween-80, 0.5% w/v) as an alternative additive to help disperse the water-insoluble substrate, the apparent activity of the epoxide hydrolase significantly increased by about 1.8-fold, while the temperature optimum shifted from 30 to 40 degrees C and the half-life of the enzyme at 50 degrees C increased by 2.5 times. The enzymatic hydrolysis of rac-GPE was highly enantioselective, with an E-value (enantiomeric ratio) of 69.3 in the Tween-80 emulsion system, which is obviously higher than that (41.2) observed in the DMSO-containing system.