Zhou ZhuanState Key Laboratory of Biomembrane and Membrane Biotechnology and the Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing 100871 ChinaPhone : Fax : Send E-Mail to Zhou Zhuan
Title: Bioaccumulation, metabolism and toxicological effects of chiral insecticide malathion and its metabolites in zebrafish (Danio rerio) Cui J, Wei Y, Jiang J, Xiao S, Liu X, Zhou Z, Liu D, Wang P Ref: Chemosphere, 318:137898, 2023 : PubMed
The bioaccumulation, metabolism, tissue-specific distribution and toxicity of the widely used organophosphorous pesticide malathion to zebrafish were investigated on an enantiomeric level for evaluating the environmental risks. The metabolites were also monitored and evaluated. Malathion was metabolized by zebrafish very fast with the half-life of 0.12 d and showed a middle accumulation capacity in zebrafish with bioaccumulation factor (BCF) of 12.9 after a 15-d exposure. Brain could enrich higher concentration of malathion than other tissues. The metabolites malaoxon, malathion/malaoxon monocarboxylic acid (DMA), malathion/malaoxon dicarboxylic acid (DCA), dimethylthiophosphate (DMTP) and dimethyldithiophosphate (DMDTP) were found, in which DMTP and DCA were in higher level, indicating the metabolism was mainly induced by carboxylesterase degradation. The accumulation of malathion and malaoxon was stereoselective in zebrafish tissues, exhibiting S-enantiomer preferentially enriched. The acute toxicity test showed rac-malathion was low toxic to zebrafish, which was 1.2 and 1.6 folds more toxic than S-malathion and R-malathion respectively. Malaoxon was highly toxic to zebrafish and approximately 32 times more toxic than malathion. The toxicity of other metabolites was lower than malathion. Malathion could cause an apparent developmental toxicity to zebrafish embryo, including bradycardia, hatchability reduction and deformity, and abnormal movement patterns in zebrafish larva. Chronic toxicity indicated that malathion and malaoxon induced oxidative damage and neurotoxicity in the liver, brain and gill of zebrafish, and malaoxon exhibited a relatively high injury to the zebrafish brain. The results can provide information for the comprehensive assessment of the potential risk of malathion to aquatic organisms and highlight the necessity of consideration of stereoselectivity and metabolites when systemically evaluating pesticides.
        
Title: GDSL Esterase/Lipase GELP1 Involved in the Defense of Apple Leaves against Colletotrichum gloeosporioides Infection Ji Z, Wang M, Zhang S, Du Y, Cong J, Yan H, Guo H, Xu B, Zhou Z Ref: Int J Mol Sci, 24:, 2023 : PubMed
GDSL esterases/lipases are a subclass of lipolytic enzymes that play critical roles in plant growth and development, stress response, and pathogen defense. However, the GDSL esterase/lipase genes involved in the pathogen response of apple remain to be identified and characterized. Thus, in this study, we aimed to analyze the phenotypic difference between the resistant variety, Fuji, and susceptible variety, Gala, during infection with C. gloeosporioides, screen for anti-disease-associated proteins in Fuji leaves, and elucidate the underlying mechanisms. The results showed that GDSL esterase/lipase protein GELP1 contributed to C. gloeosporioides infection defense in apple. During C. gloeosporioides infection, GELP1 expression was significantly upregulated in Fuji. Fuji leaves exhibited a highly resistant phenotype compared with Gala leaves. The formation of infection hyphae of C. gloeosporioides was inhibited in Fuji. Moreover, recombinant His:GELP1 protein suppressed hyphal formation during infection in vitro. Transient expression in Nicotiana benthamiana showed that GELP1-eGFP localized to the endoplasmic reticulum and chloroplasts. GELP1 overexpression in GL-3 plants increased resistance to C. gloeosporioides. MdWRKY15 expression was upregulated in the transgenic lines. Notably, GELP1 transcript levels were elevated in GL-3 after salicylic acid treatment. These results suggest that GELP1 increases apple resistance to C. gloeosporioides by indirectly regulating salicylic acid biosynthesis.
        
Title: Enhanced enzyme thermostability of a family I.3 lipase LipSR1 by T118A mutation at the calcium-binding site Jiang S, Zhou Z, Han J, Fan Q, Long Z, Wang J Ref: Biotechnol Lett, :, 2023 : PubMed
OBJECTIVES: The lipase gene lipSR1 isolated from oil-contaminated soil exhibits high hydrolytic activity for short-chain fatty acid substrates. A single calcium ion is required to anchor the lid of LipSR1 in an open conformation by coordination with two aspartate residues and three other residues in the lid. The lid of LipSR1 is anchored by Ca(2+), which is coordinated by side-chain carboxyl oxygens of Asp153 and Asp157, carbonyl oxygens of Thr118 and Ser144, and the side chain of Gln120. RESULTS: D157A, D153R, Q120A, S144A, and T118A mutants were produced by site-directed mutagenesis in this study. Analyses of hydrolytic activity and thermostability showed that the properties of D157A, D153R, Q120A, and S144A were almost lost, suggesting that Asp157, Asp153, Gln120, and Ser144 are important residues for LipSR1. However, the catalytic performance of T118A was clearly maintained. Moreover, the thermostability of mutant T118A was higher than that of wild-type LipSR1. CONCLUSIONS: These results indicated that mutation of threonine at position 118 improved the stability of the enzyme at high temperature.
        
Title: Genome wide identification of GDSL gene family explores a novel GhirGDSL26 gene enhancing drought stress tolerance in cotton Liu J, Wang H, Khan A, Xu Y, Hou Y, Wang Y, Zhou Z, Zheng J, Liu F, Cai X Ref: BMC Plant Biol, 23:14, 2023 : PubMed
BACKGROUND: Current climate change scenarios are posing greater threats to the growth and development of plants. Thus, significant efforts are required that can mitigate the negative effects of drought on the cotton plant. GDSL esterase/lipases can offer an imperative role in plant development and stress tolerance. However, thesystematic and functional roles of the GDSL gene family, particularly in cotton under water deficit conditions have not yet been explored. RESULTS: In this study, 103, 103, 99, 198, 203, 239, 249, and 215 GDSL proteins were identified in eight cotton genomes i.e., Gossypium herbaceum (A1), Gossypium arboretum (A2), Gossypium raimondii (D5), Gossypium hirsutum (AD1), Gossypium barbadense (AD2), Gossypium tomentosum (AD3), Gossypium mustelinum (AD4), Gossypium darwinii (AD5), respectively. A total of 198 GDSL genes of Gossypium hirsutum were divided into eleven clades using phylogenetic analysis, and the number of GhirGDSL varied among different clades. The cis-elements analysis showed that GhirGDSL gene expression was mainly related to light, plant hormones, and variable tense environments. Combining the results of transcriptome and RT-qPCR, GhirGDSL26 (Gh_A01G1774), a highly up-regulated gene, was selected for further elucidating its tole in drought stress tolerance via estimating physiological and biochemical parameters. Heterologous expression of the GhirGDSL26 gene in Arabidopsis thaliana resulted in a higher germination and survival rates, longer root lengths, lower ion leakage and induced stress-responsive genes expression under drought stress. This further highlighted that overexpressed plants had a better drought tolerance as compared to the wildtype plants. Moreover, 3, 3'-diaminobenzidine (DAB) and Trypan staining results indicated reduced oxidative damage, less cell membrane damage, and lower ion leakage in overexpressed plants as compared to wild type. Silencing of GhirGDSL26 in cotton via VIGS resulting in a susceptible phenotype, higher MDA and H(2)O(2) contents, lower SOD activity, and proline content. CONCLUSION: Our results demonstrated that GhirGDSL26 plays a critical role in cotton drought stress tolerance. Current findings enrich our knowledge of GDSL genes in cotton and provide theoretical guidance and excellent gene resources for improving drought tolerance in cotton.
        
Title: Hormetic effects of EGC and EGCG on CES1 activity and its rescue from oxidative stress in rat liver S9 Luo X, Lu F, Yin Z, Zhou Z, Wang Z, Zhang H Ref: Chemico-Biological Interactions, :110612, 2023 : PubMed
Carboxylesterase 1 (CES1) is a hydrolytic enzyme that plays an important role in the activation or deactivation of many therapeutic agents, thus affecting their pharmacokinetic and pharmacodynamic outcomes. Using rat liver S9 as an enzyme source and enalapril as a CES1 substrate, the present study examined effects of a number of flavonoids on the formation of enalaprilat (the active form of enalapril) produced by CES1-mediated hydrolysis. While a majority of flavonoids tested showed inhibition on CES1, an unexpected hormetic effect was observed for epigallocatechin (EGC) and epigallocatechin gallate (EGCG), i.e., stimulatory effect at low concentrations and enzyme inhibition at high concentrations. Further experiments revealed that oxidative stress caused by hydrogen peroxide, arachidonic acid plus iron, and oxidized low density lipoproteins (oxLOL) reduced CES1 activity in rat liver S9 and the loss of CES1 enzyme activity could be rescued largely by EGC or EGCG. In contrast, such effects were minimal in human liver S9, probably due to the presence of a higher ratio of reduced vs oxidized forms of glutathione. The above findings suggest that the polyphenolic nature of EGC or EGCG might be responsible for rescuing CES1 activity under oxidative stress. Because of the importance of CES1 in drug activation or deactivation and rat liver S9 as a versatile in vitro system used for drug metabolism studies and drug safety assessment, caution should be exercised to avoid potential biases for data interpretation and decision making when CES1 activity in rat liver S9 is evaluated with dependency on experimental conditions.
Alzheimer's disease (AD) implicates neuronal loss, plaque and neurofibrillary tangle formation, and disturbed neuronal Ca(2+) homeostasis, which leads to severe dementia, memory loss, as well as thinking and behavioral perturbations that could ultimately lead to death. Calcium dysregulation and low acetylcholine levels are two main mechanisms implicated in Alzheimer's disease progression. Simultaneous inhibition of calcium oscillations (store overload-induced Ca(2+) release [SOICR]) and acetylcholinesterase (AChE) by a single molecule may bring a new breath of hope for AD treatment. Here, we described some dantrolene derivatives as dual inhibitors of the ryanodine receptor and AChE. Two series of acylhydrazone/sulfonylhydrazone derivatives with aromaticgroup were designed and synthesized. In this study, the target compounds were evaluated for their ability to inhibit SOICR and AChE in vitro, using dantrolene and donepezil as positive controls. Compound 22a exhibited excellent and balanced inhibitory potency against SOICR (inhibition (%) = 90.1, IC(50) = 0.162 microM) and AChE (inhibition (%) = 93.5, IC(50) = 0.372 microM). Docking simulations showed that several preferred compounds could bind to the active sites of both the proteins, further validating the rationality of the design strategy. Potential therapeutic effects in AD were evaluated using the Barnes maze and Morris water maze tests, which demonstrated that compound 22a significantly improved memory and cognitive behavior in AD model mice. Moreover, it was also found that compound 22a could enhance synaptic strength by measuring hippocampal long-term potentiation (LTP) in brain slices. These results suggested that the introduction of a sulfonyl-hydrazone scaffold and aromatic substitution to dantrolene derivatives provided a useful template for the development of potential chemical entities against AD.
Introduction: Carboxylesterases (CXEs) and glutathione S-transferases (GSTs) can terminate olfactory signals during chemosensation by rapid degradation of odorants in the vicinity of receptors. The tea grey geometrid, Ectropis grisescens (Lepidoptera, Geometridae), one of the most devastating insect herbivores of tea plants in China, relies heavily on plant volatiles to locate the host plants as well as the oviposition sites. However, CXEs and GSTs involved in signal termination and odorant clearance in E. grisescens remains unknown. Methods: In this study, identification and spatial expression profiles of CXEs and GSTs in this major tea pest were investigated by transcriptomics and qRT-PCR, respectively. Results: As a result, we identified 28 CXEs and 16 GSTs from female and male antennal transcriptomes. Phylogenetic analyses clustered these candidates into several clades, among which antennal CXEs, mitochondrial and cytosolic CXEs, and delta group GSTs contained genes commonly associated with odorants degradation. Spatial expression profiles showed that most CXEs (26) were expressed in antennae. In comparison, putative GSTs exhibited a diverse expression pattern across different tissues, with one GST expressed specifically in the male antennae. Disscussion: These combined results suggest that 12 CXEs (EgriCXE1, 2, 4, 6, 8, 18, 20-22, 24, 26, and 29) and 5 GSTs (EgriGST1 and EgriGST delta group) provide a major source of candidate genes for odorants degradation in E. grisescens.
Insecticides are widely used in agriculture as effective means to control pests. However, pests have not been completely mitigated with the increased use of insecticides. Instead, many side effects have arisen, especially the '3Rs' (resistance, resurgence, and residue). The brown planthopper, Nilaparvata lugens, is one of the most threatening rice pests. The main insecticides for controlling N. lugens belong to organochlorine, organophosphorus, carbamate, neonicotinoid and pyrethroid groups. However, metabolic enzymes, including cytochrome P450s, esterases, glutathione-S-transferases, and ATP-binding cassette transporters, effectively promote the detoxification of insecticides. Besides, mutations of neurological target sites, such as acetylcholinesterase, nicotinic acetylcholine, gamma-aminobutyric acid receptor, and ryanodine receptor, result in insensitivity to insecticides. Here, we review the physiological metabolic resistance in N. lugens under insecticide stress to provide a theoretical basis for identifying and developing more effective and harmless insecticides.
It is particularly challenging to develop a truly effective pharmacotherapy for cocaine use disorder (CUD) treatment. Accelerating cocaine metabolism via hydrolysis at cocaine benzoyl ester using an efficient cocaine hydrolase (CocH) is known as a promising pharmacotherapeutic approach to CUD treatment. Preclinical and clinical studies on our first CocH (CocH1), in its human serum albumin-fused form known as TV-1380, have demonstrated the promise of a general concept of CocH-based pharmacotherapy for CUD treatment. However, the biological half-life of TV-1380 (t(1/2) = 8 h in rats, associated with t(1/2) = 43-77 h in humans) is not long enough for practical treatment of cocaine dependence, which requires enzyme injection for no more than once weekly. Through protein fusion of a human butyrylcholinesterase mutant (denoted as CocH5) with a mutant (denoted as Fc(M6)) of Fc from human IgG1, we have designed, prepared, and tested a new fusion protein (denoted as CocH5-Fc(M6)) for its pharmacokinetic profile and in vivo catalytic activity against (-)-cocaine. CocH5-Fc(M6) represents the currently most efficient long-acting cocaine hydrolase with both the highest catalytic activity against (-)-cocaine and the longest elimination half-life (t(1/2) = 229 +/- 5 h) in rats. As a result, even at a single modest dose of 3 mg/kg, CocH5-Fc(M6) can significantly and effectively accelerate the metabolism of cocaine in rats for at least 60 days. In addition, -70 nM CocH5-Fc(M6) in plasma was able to completely block the toxicity and physiological effects induced by intraperitoneal injection of a lethal dose of cocaine (60 mg/kg).
We recently showed that NOTUM, a liver-secreted Wnt inhibitor, can acutely promote browning of white adipose. We now report studies of chronic overexpression of NOTUM in liver indicating that it protects against diet-induced obesity and improves glucose homeostasis in mice. Adeno-associated virus (AAV) vectors were used to overexpress GFP or mouse Notum in the livers of male C57BL/6J mice and the mice were fed an obesifying diet. After 14 weeks of high fat, high sucrose diet feeding, the AAV-Notum mice exhibited decreased obesity and improved glucose tolerance compared to the AAV-GFP mice. Gene expression and immunoblotting analysis of the inguinal fat and brown fat revealed increased expression of beige/brown adipocyte markers in the AAV-Notum group, suggesting enhanced thermogenic capacity by NOTUM. A beta3 adrenergic receptor agonist-stimulated lipolysis test suggested increased lipolysis capacity by NOTUM. The levels of collagen and C-C motif chemokine ligand 2 (CCL2) in the epididymal white adipose tissue of the AAV-Notum mice were significantly reduced, suggesting decreased fibrosis and inflammation, respectively. RNA sequencing analysis of inguinal white adipose of 4-week chow diet-fed mice revealed a highly significant enrichment of extracellular matrix (ECM) functional cluster among the down-regulated genes in the AAV-Notum group, suggesting a potential mechanism contributing to improved glucose homeostasis. Our in vitro studies demonstrated that recombinant human NOTUM protein blocked the inhibitory effects of WNT3A on brown adipocyte differentiation. Furthermore, NOTUM attenuated WNT3A's effects on upregulation of TGF-beta signaling and its downstream targets. Overall, our data suggest that NOTUM modulates adipose tissue function by promoting thermogenic capacity and inhibiting fibrosis through inhibition of Wnt signaling.
        
Title: Repressed OsMESL expression triggers reactive oxygen species mediated broad-spectrum disease resistance in rice Hu B, Zhou Y, Zhou Z, Sun B, Zhou F, Yin C, Ma W, Chen H, Lin Y Ref: Plant Biotechnol J, :, 2021 : PubMed
A few reports have indicated that a single gene confer resistance to bacterial blight, sheath blight, and rice blast. In this study, we identified a novel disease resistance mutant gene, methyl esterase-like (osmesl) in rice. Mutant rice with T-DNA insertion displayed significant resistance to bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo), sheath blight caused by Rhizoctonia solani and rice blast caused by Magnaporthe oryzae. Additionally, CRISPR-Cas9 knockout mutants and RNAi lines displayed resistance to these pathogens. Complementary T-DNA mutants demonstrated a phenotype similar to the wild type (WT), thereby indicating that osmesl confers resistance to pathogens. Protein interaction experiments revealed that OsMESL affects reactive oxygen species (ROS) accumulation by interacting with thioredoxin OsTrxm in rice. Moreover, qRT-PCR results showed significantly reduced mRNA levels of multiple ROS scavenging-related genes in osmesl mutants. Nitroblue tetrazolium staining showed that the pathogens cause ROS accumulation, and quantitative detection revealed significantly increased levels of H(2) O(2) in the leaves of osmesl mutants and RNAi lines after infection. The abundance of JA, a hormone associated with disease resistance, was significantly more in osmesl mutants than in WT plants. Overall, these results suggested that osmesl enhances disease resistance to Xoo, R. solani and M. oryzae by modulating the ROS balance.
The diploid wild cotton species Gossypium australe possesses excellent traits including resistance to disease and delayed gland morphogenesis, and has been successfully used for distant breeding programmes to incorporate disease resistance traits into domesticated cotton. Here, we sequenced the G. australe genome by integrating PacBio, Illumina short read, BioNano (DLS) and Hi-C technologies, and acquired a high-quality reference genome with a contig N50 of 1.83 Mb and a scaffold N50 of 143.60 Mb. We found that 73.5% of the G. australe genome is composed of various repeat sequences, differing from those of G. arboreum (85.39%), G. hirsutum (69.86%) and G. barbadense (69.83%). The G. australe genome showed closer collinear relationships with the genome of G. arboreum than G. raimondii and has undergone less extensive genome reorganization than the G. arboreum genome. Selection signature and transcriptomics analyses implicated multiple genes in disease resistance responses, including GauCCD7 and GauCBP1, and experiments revealed induction of both genes by Verticillium dahliae and by the plant hormones strigolactone (GR24), salicylic acid (SA) and methyl jasmonate (MeJA). Experiments using a Verticillium-resistant domesticated G. barbadense cultivar confirmed that knockdown of the homologues of these genes caused a significant reduction in resistance against Verticillium dahliae. Moreover, knockdown of a newly identified gland-associated gene GauGRAS1 caused a glandless phenotype in partial tissues using G. australe. The G. australe genome represents a valuable resource for cotton research and distant relative breeding as well as for understanding the evolutionary history of crop genomes.
        
Title: Effects of Polyhydroxyfullerenes on Organophosphate-Induced Toxicity in Mice Ehrich M, Hinckley J, Werre SR, Zhou Z Ref: Toxicology, :152586, 2020 : PubMed
Two polyhydroxyfullerenes, which decrease organophosphate (OP)-induced acetylcholinesterase (AChE) inhibition in vitro, were administered by the intraperitoneal (ip) route or applied topically at doses of 0.9-24 mg/kg to protect adult male mice from enzyme-inhibiting and behavioral effects indicative of OP toxicity resulting from exposure to 1.7 - 2 mg/kg diphosphorofluoridate (DFP) ip or 2.3 - 2.7 mg paraoxon topical. Dosing paradigms included OP-fullerene simultaneous administration by the ip route, and 20 min post-OP polyhydroxyfullerene treatment topically. Benefits of OP sequestration by the polyhydroxyfullerene were noted and were dependent on the OP compound as well as timing and route of the polyhydroxyfullerene treatment.
        
Title: Neuroprotective effects of the aerial parts of Polygala tenuifolia Willd extract on scopolamine-induced learning and memory impairments in mice Wang X, Zhang D, Song W, Cai CF, Zhou Z, Fu Q, Yan X, Cao Y, Fang M Ref: Biomed Rep, 13:37, 2020 : PubMed
Alzheimer's disease is a common neurodegenerative disease characterized by progressive cognitive dysfunction and behavioral impairment. Aerial parts of Polygala tenuifolia Willd (APT) is a traditional Chinese medicine used for the treatment of amnesia. The present study aimed to investigate the protective effects of APT on scopolamine-induced learning and memory impairments in mice. Scopolamine-induced mice were used to determine the effects of APT on learning and memory impairment. Mice were orally administered with APT (25, 50 and 100 mg/kg) and piracetam (750 mg/kg) for 14 days, and intraperitoneally injected with scopolamine (2 mg/kg) from days 8 to 14. Morris water maze and step-down tests were performed to evaluate learning and memory. Levels of acetylcholine (ACh), choline acetyltransferase (ChAT), acetylcholinesterase (AChE), interleukin (IL)-1beta, IL-10 and brain-derived neurotrophic factor (BDNF) in the hippocampus and frontal cortex were measured by ELISA. Superoxide dismutase (SOD), malondialdehyde (MDA) and glutathione (GSH) were measured via biochemical detection. The results demonstrated that APT ameliorated learning and memory impairment in scopolamine-induced mice. Correspondingly, APT significantly increased ACh and ChAT levels in the hippocampus and prefrontal cortex of scopolamine-induced mice. Additionally, treatment with APT significantly increased BDNF and IL-10 levels, and decreased IL-1beta and AChE levels in the same mice. Furthermore, APT significantly increased SOD activity and GSH content, and decreased MDA levels in brain tissue. These results indicated that APT may ameliorate learning and memory impairment by regulating cholinergic activity, promoting BDNF and inhibiting neuroinflammation and oxidative stress.
Quorum quenching (QQ) blocks bacterial cell-to-cell communication (i.e., quorum sensing), and is a promising antipathogenic strategy to control bacterial infection via inhibition of virulence factor expression and biofilm formation. QQ enzyme AiiO-AIO6 from Ochrobactrum sp. M231 has several excellent properties and shows biotherapeutic potential against important bacterial pathogens of aquatic species. AiiO-AIO6 can be secretory expressed in Bacillus subtilis via a non-classical secretion pathway. To improve AiiO-AIO6 production, four intracellular protease-deletion mutants of B. subtilis 1A751 were constructed by individually knocking out the intracellular protease-encoding genes (tepA, ymfH, yrrN and ywpE). The AiiO-AIO6 expression plasmid pWB-AIO6BS was transformed into the B. subtilis 1A751 and its four intracellular protease-deletion derivatives. Results showed that all recombinant intracellular protease-deletion derivatives (BStepA, BSymfH, BSyrrN and BSywpE) had a positive impact on AiiO-AIO6 production. The highest amount of AiiO-AIO6 extracellular production of BSywpE in shake flask reached 1416.47 U/mL/OD(600), which was about 121% higher than that of the wild-type strain. Furthermore, LC-MS/MS analysis of the degrading products of 3-oxo-C8-HSL by purification of AiiO-AIO6 indicated that AiiO-AIO6 was an AHL-lactonase which hydrolyzes the lactone ring of AHLs. Phylogenetic analysis showed that AiiO-AIO6 was classified as a member of the alpha/beta hydrolase family with a conserved "nucleophile-acid-histidine" catalytic triad. In summary, this study showed that intracellular proteases were responsible for the reduced yields of heterologous proteins and provided an efficient strategy to enhance the extracellular production of AHL lactonase AiiO-AIO6.
        
Title: Perinatal exposure to 2-Ethylhexyl Diphenyl Phosphate (EHDPHP) affected the metabolic homeostasis of male mouse offspring: Unexpected findings help to explain dose- and diet- specific phenomena Yan S, Wang D, Teng M, Meng Z, Yan J, Li R, Jia M, Tian S, Zhou Z, Zhu W Ref: J Hazard Mater, 388:122034, 2020 : PubMed
The environmental health risks of a new type of organophosphate flame retardant, 2-ethylhexyl diphenyl phosphate (EHDPHP), which is present in large quantities in various Nordic foods, have attracted the attention of scientists recently. In this study, the metabolic homeostasis of low-fat diet (LFD) and high-fat diet (HFD) fed male mice offspring was assessed after perinatal exposure to two doses (30 microg/kg bw/day and 300 microg/kg bw/day) of EHDPHP. Perinatal exposure to EHDPHP resulted in weight changes in male mice offspring, altered glucose tolerance and induced liver damage, and surprisingly these changes were dose- and diet- specific. Then the (1)H NMR-based metabolomics, 16S rRNA sequencing, and qRT-PCR techniques were used to explore the mechanisms of these specific changes. The results indicate that the increase in short-chain fatty acids and the increase in Clostridium in the high-dose group may be responsible for the dose-specificity, while the attenuation of the purine metabolic pathway and the decrease in glutamine levels in the HFD group are accountable for the diet-specificity. In addition, down-regulation of PPARG (peroxisome proliferator-activated receptor gamma) gene expression levels might have caused the decrease in body weight in the H + HFD (high dose exposure with HFD feeding) group. Over all, these results elucidated the effects of dosage and diet on the toxicology of EHDPHP.
OBJECTIVE: To determine whether beta-amyloidopathy correlates with apathy rating scores independently of mood changes and other neurodegenerative processes in Parkinson disease (PD). METHODS: In this cross-sectional study, patients with PD (n = 64, 48 male and 16 female, mean age 69.2 +/- 6.7 years, Hoehn & Yahr stage 2.7 +/- 0.5, Montreal Cognitive Assessment score 25.3 +/- 3.0) underwent [(11)C]Pittsburgh compound B beta-amyloid, [(11)C]dihydrotetrabenazine vesicular monoamine transporter type 2 (VMAT2), and [(11)C]methyl 4 piperidinyl propionate acetylcholinesterase brain PET imaging and clinical assessments, including the Marin Apathy Evaluation Scale, Clinician Version. Patients were recruited on the basis of having at least 1 risk factor for PD dementia, but they were excluded if they had dementia. RESULTS: Mean apathy rating score was 25.4 +/- 6.4, reflecting predominantly subclinical apathy. Apathy rating scale scores correlated with amyloid binding, cognitive, depressive, and anxiety scores but not significantly with age, duration of disease, striatal VMAT2, or cholinergic binding. Multiple regression analysis model (p < 0.0001) showed significant regressor effects for global beta-amyloid burden (p = 0.0038) with significant covariate effects for global cognitive z scores (p = 0.028) and for anxiety (p = 0.038) but not with depressive scores. Voxel-based analysis showed robust correlation between apathy rating scale scores and beta-amyloid binding in bilateral nuclei accumbens, inferior frontal, and cingulate cortices (family-wise error rate-corrected p < 0.005). CONCLUSION: Apathy is independently associated with beta-amyloidopathy in patients with PD at risk of dementia. Regional brain findings are most robust for beta-amyloidopathy in the nuclei accumbens, inferior frontal, and cingulate regions. Findings may provide an explanation for the often treatment-refractory nature of apathy in advancing PD despite optimized dopaminergic and antidepressant pharmacotherapy. CLINICALTRIALSGOV IDENTIFIER: NCT01565473.
Eighteen new Lycopodium alkaloids, lycosquarrines A-R (1-18), and eight known alkaloids were isolated from the aerial parts of Phlegmariurus squarrosus. Compounds 1-5 and 19, identified from natural sources for the first time, are uncommon lycopodine-type alkaloids with beta-oriented H-4. Pentacyclic 4 and 5 represent the first examples of 5,12- and 5,11-epoxy Lycopodium alkaloids, respectively, and an epoxide-opening cyclization reaction is suggested to be a key step in their biosynthesis. Compound 18 possesses the same carbon skeleton as carinatine A (22), which was previously reported as a unique Lycopodium alkaloid with a 5/6/6/6 ring system. X-ray crystallographic data analysis was used to determine the absolute configuration of 18, leading to the establishment of the absolute configuration of 22 by comparison of the ECD spectra. An anti-acetylcholinesterase activity assay showed that 11 and 20 exhibited inhibitory activities with IC(50) values of 4.2 and 2.1 microM, respectively.
OBJECTIVE: Postural instability and gait difficulties (PIGDs) represent debilitating disturbances in Parkinson's disease (PD). Past acetylcholinesterase positron emission tomography (PET) imaging studies implicate cholinergic changes as significant contributors to PIGD features. These studies were limited in quantification of striatal cholinergic synapse integrity. Vesicular acetylcholine transporter (VAChT) PET ligands are better suited for evaluation of high binding areas. We examined associations between regional VAChT expression and freezing of gait (FoG) and falls. METHODS: Ninety-four PD subjects underwent clinical assessment and VAChT ([(18) F]FEOBV) PET. RESULTS: Thirty-five subjects (37.2%) reported a history of falls, and 15 (16%) had observed FoG. Univariate volume-of-interest analyses demonstrated significantly reduced thalamic (p = 0.0016) VAChT expression in fallers compared to nonfallers. VAChT expression was significantly reduced in the striatum (p = 0.0012) and limbic archicortex (p = 0.004) in freezers compared to nonfreezers. Whole-brain voxel-based analyses of FEOBV PET complemented these findings and showed more granular changes associated with falling history, including the right visual thalamus (especially the right lateral geniculate nucleus [LGN]), right caudate nucleus, and bilateral prefrontal regions. Freezers had prominent VAChT expression reductions in the bilateral striatum, temporal, and mesiofrontal limbic regions. INTERPRETATION: Our findings confirm and extend on previous PET findings of thalamic cholinergic deficits associated with falling history and now emphasize right visual thalamus complex changes, including the right LGN. FoG status is associated with reduced VAChT expression in striatal cholinergic interneurons and the limbic archicortex. These observations suggest different cholinergic systems changes underlying falls and FoG in PD. Ann Neurol 2019;85:538-549.
        
Title: Development of a long-acting Fc-fused cocaine hydrolase with improved yield of protein expression Chen X, Deng J, Zheng X, Zhang J, Zhou Z, Wei H, Zhan CG, Zheng F Ref: Chemico-Biological Interactions, 306:89, 2019 : PubMed
Human butyrylcholinesterase (BChE) is known as a safe and effective protein for detoxification of organophosphorus (OP) nerve agents. Its rationally designed mutants with considerably improved catalytic activity against cocaine, known as cocaine hydrolases (CocHs), are recognized as the most promising drug candidates for the treatment of cocaine abuse. However, it is a grand challenge to efficiently produce active recombinant BChE and CocHs with a sufficiently long biological half-life. In the present study, starting from a promising CocH, known as CocH3 (i.e. A199S/F227A/S287G/A328W/Y332G mutant of human BChE), which has a approximately 2000-fold improved catalytic activity against cocaine compared to wild-type BChE, we designed an N-terminal fusion protein, Fc(M3)-(PAPAP)2-CocH3, which was constructed by fusing Fc of human IgG1 to the N-terminal of CocH3 and further optimized by inserting a linker between the two protein domains. Without lowering the enzyme activity, Fc(M3)-(PAPAP)2-CocH3 expressed in Chinese hamster ovary (CHO) cells has not only a long biological half-life of 105+/-7h in rats, but also a high yield of protein expression. Particularly, Fc(M3)-(PAPAP)2-CocH3 has a approximately 21-fold increased protein expression yield in CHO cells compared to CocH3 under the same experimental conditions. Given the observations that Fc(M3)-(PAPAP)2-CocH3 has not only a high catalytic activity against cocaine and a long biological half-life, but also a high yield of protein expression, this new protein entity reported in this study would be a more promising candidate for therapeutic treatment of cocaine overdose and addiction.
        
Title: Contemporary medicinal-chemistry strategies for the discovery of selective butyrylcholinesterase inhibitors Jing L, Wu G, Kang D, Zhou Z, Song Y, Liu X, Zhan P Ref: Drug Discov Today, 24:629, 2019 : PubMed
Butyrylcholinesterase (BChE) is considered a promising drug target for the treatment of moderate to severe Alzheimer's disease (AD). Here, we review medicinal-chemistry strategies that are currently available for the discovery of selective BChE inhibitors.
In vitro experiments previously published demonstrated the ability of fullerenes to decrease the capability of organophosphorus (OP) compounds to inhibit acetylcholinesterase. Experiments described herein demonstrate molecular level affinity interactions between fullerenes and the OP test compound paraoxon with NMR spectroscopy. The calculated binding constant of 19 M(-1) indicates that this binding was not covalent.
We studied sex differences in over 50 cardio-metabolic traits in a panel of 100 diverse inbred strains of mice. The results clearly showed that the effects of sex on both clinical phenotypes and gene expression depend on the genetic background. In support of this, genetic loci associated with the traits frequently showed sex specificity. For example, Lyplal1, a gene implicated in human obesity, was shown to underlie a sex-specific locus for diet-induced obesity. Global gene expression analyses of tissues across the panel implicated adipose tissue "beiging" and mitochondrial functions in the sex differences. Isolated mitochondria showed gene-by-sex interactions in oxidative functions, such that some strains (C57BL/6J) showed similar function between sexes, whereas others (DBA/2J and A/J) showed increased function in females. Reduced adipose mitochondrial function in males as compared to females was associated with increased susceptibility to obesity and insulin resistance. Gonadectomy studies indicated that gonadal hormones acting in a tissue-specific manner were responsible in part for the sex differences.
Plasma cholinesterase (PCHE) activity is an important auxiliary test in human clinical medicine. It can distinguish liver diseases from non-liver diseases and help detect organophosphorus poisoning. Animal experiments have confirmed that PCHE activity is associated with obesity and hypertension and changes with physiological changes in an animal's body. The objective of this study was to locate the genetic loci responsible for PCHE activity variation in ducks. PCHE activity of Pekin duck x mallard F2 ducks at 3 and 8 weeks of age were analyzed, and genome-wide association studies were conducted. A region of about 1.5 Mb (21.8-23.3 Mb) on duck chromosome 9 was found to be associated with PCHE activity at both 3 and 8 weeks of age. The top SNP, g.22643979C>T in the butyrylcholinesterase (BCHE) gene, was most highly associated with PCHE activity at 3 weeks (-logP = 21.45) and 8 weeks (-logP = 27.60) of age. For the top SNP, the strong associations of CC and CT genotypes with low PCHE activity and the TT genotype with high PCHE activity indicates the dominant inheritance of low PCHE activity. Problems with block inheritance or linkage exist in this region. This study supports that BCHE is a functional gene for determining PCHE levels in ducks and that the genetic variations around this gene can cause phenotypic variations of PCHE activity.
Reptiles, the most diverse taxon of terrestrial vertebrates, might be particularly vulnerable to soil pollution. Reptiles especially lizards have been rarely evaluated in ecotoxicological studies, and there is a very limited report for effects of soil pesticide contaminants on lizards. In this study, male and female lizards (Eremias argus) were exposed to Glufosinate-ammonium (GLA) and l- Glufosinate-ammonium (L-GLA) for 60 days. Slower sprint speed, higher frequency of turning back and reduced brain index were observed in treatment groups. The accumulation of GLA in the brain of lizard was higher than that of L-GLA. Moreover, the activities of neurotoxicity-related enzymes and biomarkers of oxidative stress were also investigated. In summary, the neurotoxic effects of lizards have been observed after exposure to GLA and L-GLA. Based on the result of the Integrated Biomarker Response (IBR), males were more sensitive to contaminants than females. On the other hand, the neurotoxic pathways by GLA and L-GLA triggered were slightly different: GLA mainly acted on glutamine synthetase (GS), acetylcholinesterase (AchE) and Catalase (CAT) and L-GLA aimed at AchE, Na(+)/K(+)-ATPase, Superoxide dismutase (SOD) and Malondialdehyde (MDA). In summary, the accumulation of GLA and L-GLA in lizard's brain induced neurotoxicity by altering the levels of enzymes related to nervous system and antioxidant activity and further resulted in the decrease of brain index and locomotor performance.
Neuroligins (NLGs) are postsynaptic adhesion molecules known to play essential roles in synapse development and maturation, but their effects on synaptic plasticity at mature synapses remain unclear. In this study, we investigate the involvement of NLG1 in hippocampal long-term depression (LTD), a key form of long lasting synaptic plasticity, critical for memory formation and brain disorders, by using mice deficient in the expression of NLG1. We find that although NLG1 homozygous (NLG1-/-) mice show no impairments in either NMDA receptor- (NMDAR-LTD) or metabotropic glutamate receptor-dependent LTD (mGluR-LTD), the heterozygous (NLG1+/-) mice are significantly altered in both forms of LTD characterized by the absence of NMDAR-LTD but enhanced mGluR-LTD. Accordingly, the NLG1+/-, but not the NLG1-/- mice are altered in synaptic proteins, including PSD95, GluA2 and phosphorylated GluA1 at serine 845, all of which are involved in the expression of LTD. The NLG1+/- mice also exhibit autistic-like behaviors including increased grooming and impaired recognition memory. We further show that the expression of NLG3, a close family member of NLG1, is elevated in the NLG1-/-, but not in NLG1+/- mice, suggesting that the lack of LTD deficits in the NLG1-/- mice might be due to the increased NLG3. Our results reveal a gene dosage dependent role for NLG1 in the regulation of LTD and suggest that moderate changes in NLG1 protein level may be sufficient to cause synaptic and behavior deficits in brain disorders where copy number variants and hemizygosity of gene mutations are common.
        
Title: The Cholinergic and Adrenergic Autocrine Signaling Pathway Mediates Immunomodulation in Oyster Crassostrea gigas Liu Z, Wang L, Lv Z, Zhou Z, Wang W, Li M, Yi Q, Qiu L, Song L Ref: Front Immunol, 9:284, 2018 : PubMed
It is becoming increasingly clear that neurotransmitters impose direct influence on regulation of the immune process. Recently, a simple but sophisticated neuroendocrine-immune (NEI) system was identified in oyster, which modulated neural immune response via a "nervous-hemocyte"-mediated neuroendocrine immunomodulatory axis (NIA)-like pathway. In the present study, the de novo synthesis of neurotransmitters and their immunomodulation in the hemocytes of oyster Crassostrea gigas were investigated to understand the autocrine/paracrine pathway independent of the nervous system. After hemocytes were exposed to lipopolysaccharide (LPS) stimulation, acetylcholine (ACh), and norepinephrine (NE) in the cell supernatants, both increased to a significantly higher level (2.71- and 2.40-fold, p < 0.05) comparing with that in the control group. The mRNA expression levels and protein activities of choline O-acetyltransferase and dopamine beta-hydroxylase in hemocytes which were involved in the synthesis of ACh and NE were significantly elevated at 1 h after LPS stimulation, while the activities of acetylcholinesterase and monoamine oxidase, two enzymes essential in the metabolic inactivation of ACh and NE, were inhibited. These results demonstrated the existence of the sophisticated intracellular machinery for the generation, release and inactivation of ACh and NE in oyster hemocytes. Moreover, the hemocyte-derived neurotransmitters could in turn regulate the mRNA expressions of tumor necrosis factor (TNF) genes, the activities of superoxide dismutase, catalase and lysosome, and hemocyte phagocytosis. The phagocytic activities of hemocytes, the mRNA expressions of TNF and the activities of key immune-related enzymes were significantly changed after the block of ACh and NE receptors with different kinds of antagonists, suggesting that autocrine/paracrine self-regulation was mediated by transmembrane receptors on hemocyte. The present study proved that oyster hemocyte could de novo synthesize and release cholinergic and adrenergic neurotransmitters, and the hemocyte-derived ACh/NE could then execute a negative regulation on hemocyte phagocytosis and synthesis of immune effectors with similar autocrine/paracrine signaling pathway identified in vertebrate macrophages. Findings in the present study demonstrated that the immune and neuroendocrine system evolved from a common origin and enriched our knowledge on the evolution of NEI system.
        
Title: Assessment of tissue-specific accumulation, elimination and toxic effects of dichlorodiphenyltrichloroethanes (DDTs) in carp through aquatic food web Di S, Liu R, Tian Z, Cheng C, Chen L, Zhang W, Zhou Z, Diao J Ref: Sci Rep, 7:2288, 2017 : PubMed
Microcosms containing DDT spiked-sediment, Tubifex tubifex and carp (Cyprinus carpio) were constructed to simulate a freshwater system. The accumulation, elimination and toxic effects of DDT (p,p'-DDT, o,p'-DDT), and its metabolites DDD (p,p'-DDD, o,p'-DDD) and DDE (p,p'-DDE, o,p'-DDE) were studied in T. tubifex and carp. Tissue/organ distributions of DDTs were also investigated in carp. The bioaccumulation and elimination of DDT differed in T. tubifex, carp and its tissues/organs. Unimodal or bimodal distributions were observed, and the concentrations of DDT metabolites (DDD and p,p'-DDE) increased over time. The carp organ with the highest concentrations of DDTs (DDT, DDD and DDE) was the gill. The largest mass distribution of DDTs was also in gill, followed by muscle and gastrointestinal tract. Maximum levels of DDTs in whole carp and carp muscle were 161 and 87 ng/g, respectively; therefore, the levels of DDTs observed in carp in this study were insufficient to constitute a health concern if present in fish for human consumption. Significant changes were observed in some biomarkers, including superoxide dismutase, catalase, glutathione-S-transferase, glutathione, and carboxylesterase, in T. tubifex and carp tissues during DDT exposure. Tissue-specific accumulation of DDTs in carp can be a key indicator of exposure to environmentally relevant concentrations.
Reconstructing the genomes of bilaterian ancestors is central to our understanding of animal evolution, where knowledge from ancient and/or slow-evolving bilaterian lineages is critical. Here we report a high-quality, chromosome-anchored reference genome for the scallop Patinopecten yessoensis, a bivalve mollusc that has a slow-evolving genome with many ancestral features. Chromosome-based macrosynteny analysis reveals a striking correspondence between the 19 scallop chromosomes and the 17 presumed ancestral bilaterian linkage groups at a level of conservation previously unseen, suggesting that the scallop may have a karyotype close to that of the bilaterian ancestor. Scallop Hox gene expression follows a new mode of subcluster temporal co-linearity that is possibly ancestral and may provide great potential in supporting diverse bilaterian body plans. Transcriptome analysis of scallop mantle eyes finds unexpected diversity in phototransduction cascades and a potentially ancient Pax2/5/8-dependent pathway for noncephalic eyes. The outstanding preservation of ancestral karyotype and developmental control makes the scallop genome a valuable resource for understanding early bilaterian evolution and biology.
        
Title: Effects of a cocaine hydrolase engineered from human butyrylcholinesterase on metabolic profile of cocaine in rats Chen X, Zheng X, Zhou Z, Zhan CG, Zheng F Ref: Chemico-Biological Interactions, 259:104, 2016 : PubMed
Accelerating cocaine metabolism through enzymatic hydrolysis at cocaine benzoyl ester is recognized as a promising therapeutic approach for cocaine abuse treatment. Our more recently designed A199S/F227A/S287G/A328W/Y332G mutant of human BChE, denoted as cocaine hydrolase-3 (CocH3), has a considerably improved catalytic efficiency against cocaine and has been proven active in blocking cocaine-induced toxicity and physiological effects. In the present study, we have further characterized the effects of CocH3 on the detailed metabolic profile of cocaine in rats administrated intravenously (IV) with 5 mg/kg cocaine, demonstrating that IV administration of 0.15 mg/kg CocH3 dramatically changed the metabolic profile of cocaine. Without CocH3 administration, the dominant cocaine-metabolizing pathway in rats was cocaine methyl ester hydrolysis to benzoylecgonine (BZE). With the CocH3 administration, the dominant cocaine-metabolizing pathway in rats became cocaine benzoyl ester hydrolysis to ecgonine methyl ester (EME), and the other two metabolic pathways (i.e. cocaine methyl ester hydrolysis to BZE and cocaine oxidation to norcocaine) became insignificant. The CocH3-catalyzed cocaine benzoyl ester hydrolysis to EME was so efficient such that the measured maximum blood cocaine concentration ( approximately 38 ng/ml) was significantly lower than the threshold blood cocaine concentration ( approximately 72 ng/ml) required to produce any measurable physiological effects.
Cocaine is one of the most addictive drugs without a U.S. Food and Drug Administration (FDA)-approved medication. Enzyme therapy using an efficient cocaine-metabolizing enzyme is recognized as the most promising approach to cocaine overdose treatment. The actual enzyme, known as RBP-8000, under current clinical development for cocaine overdose treatment is our previously designed T172R/G173Q mutant of bacterial cocaine esterase (CocE). The T172R/G173Q mutant is effective in hydrolyzing cocaine but inactive against benzoylecgonine (a major, biologically active metabolite of cocaine). Unlike cocaine itself, benzoylecgonine has an unusually stable zwitterion structure resistant to further hydrolysis in the body and environment. In fact, benzoylecgonine can last in the body for a very long time (a few days) and, thus, is responsible for the long-term toxicity of cocaine and a commonly used marker for drug addiction diagnosis in pre-employment drug tests. Because CocE and its mutants are all active against cocaine and inactive against benzoylecgonine, one might simply assume that other enzymes that are active against cocaine are also inactive against benzoylecgonine. Here, through combined computational modeling and experimental studies, we demonstrate for the first time that human butyrylcholinesterase (BChE) is actually active against benzoylecgonine, and that a rationally designed BChE mutant can not only more efficiently accelerate cocaine hydrolysis but also significantly hydrolyze benzoylecgonine in vitro and in vivo. This sets the stage for advanced studies to design more efficient mutant enzymes valuable for the development of an ideal cocaine overdose enzyme therapy and for benzoylecgonine detoxification in the environment.
        
Title: Neuroligin 1 regulates spines and synaptic plasticity via LIMK1/cofilin-mediated actin reorganization Liu A, Zhou Z, Dang R, Zhu Y, Qi J, He G, Leung C, Pak D, Jia Z, Xie W Ref: Journal of Cell Biology, 212:449, 2016 : PubMed
Neuroligin (NLG) 1 is important for synapse development and function, but the underlying mechanisms remain unclear. It is known that at least some aspects of NLG1 function are independent of the presynaptic neurexin, suggesting that the C-terminal domain (CTD) of NLG1 may be sufficient for synaptic regulation. In addition, NLG1 is subjected to activity-dependent proteolytic cleavage, generating a cytosolic CTD fragment, but the significance of this process remains unknown. In this study, we show that the CTD of NLG1 is sufficient to (a) enhance spine and synapse number, (b) modulate synaptic plasticity, and (c) exert these effects via its interaction with spine-associated Rap guanosine triphosphatase-activating protein and subsequent activation of LIM-domain protein kinase 1/cofilin-mediated actin reorganization. Our results provide a novel postsynaptic mechanism by which NLG1 regulates synapse development and function.
        
Title: The cholinergic immune regulation mediated by a novel muscarinic acetylcholine receptor through TNF pathway in oyster Crassostrea gigas Liu Z, Zhou Z, Wang L, Dong W, Qiu L, Song L Ref: Dev Comp Immunol, 65:139, 2016 : PubMed
Muscarinic receptors, which selectively take muscarine as their ligand, are critical for the immunological and physiological processes in animals. In the present study, the open region frame (ORF) of a homologue of muscarinic acetylcholine (ACh) receptor (mAChR) was amplified from oyster Crassostrea gigas (named as CgmAChR-1), whose full length was 1983 bp and the protein it encoded contained 660 amino acids with a seven transmembrane region. Phylogeny analysis suggested that CgmAChR-1 shared homology with M5 muscarinic receptor found in invertebrates including Habropoda laboriosa, Acromyrmex echinatior and Echinococcus granulosus. After cell transfection of CgmAChR-1 into HEK293T cells and ACh incubation, the level of intracellular Ca(2+) and cAMP increased significantly (p < 0.05). Such trend could be reverted with the addition of M3 and M5 muscarinic receptor antagonists DAMP and DAR. The CgmAChR-1 transcripts were ubiquitously detectable in seven different tissues with the maximal expression level in adductor muscle. When the oysters received LPS stimulation, CgmAChR-1 mRNA expression in haemocyte was increased to the highest level (6.05-fold, p < 0.05) at 24 h, while blocking CgmAChR-1 using receptor antagonists before LPS stimulation promoted the expression of oyster TNF, resulting in the increase of haemocyte apoptosis index. These results suggested that CgmAChR-1 was the key molecule in cholinergic neuroendocrine-immune system contributing to the regulation of TNF expression and apoptosis process.
Nematophagous fungi employ three distinct predatory strategies: nematode trapping, parasitism of females and eggs, and endoparasitism. While endoparasites play key roles in controlling nematode populations in nature, their application for integrated pest management is hindered by the limited understanding of their biology. We present a comparative analysis of a high quality finished genome assembly of Drechmeria coniospora, a model endoparasitic nematophagous fungus, integrated with a transcriptomic study. Adaptation of D. coniospora to its almost completely obligate endoparasitic lifestyle led to the simplification of many orthologous gene families involved in the saprophytic trophic mode, while maintaining orthologs of most known fungal pathogen-host interaction proteins, stress response circuits and putative effectors of the small secreted protein type. The need to adhere to and penetrate the host cuticle led to a selective radiation of surface proteins and hydrolytic enzymes. Although the endoparasite has a simplified secondary metabolome, it produces a novel peptaibiotic family that shows antibacterial, antifungal and nematicidal activities. Our analyses emphasize the basic malleability of the D. coniospora genome: loss of genes advantageous for the saprophytic lifestyle; modulation of elements that its cohort species utilize for entomopathogenesis; and expansion of protein families necessary for the nematode endoparasitic lifestyle.
        
Title: Proteomic analysis of ubiquitinated proteins from deltamethrin-resistant and susceptible strains of the diamondback moth, Plutella Xylostella L Cheng L, Du Y, Hu J, Jiao D, Li J, Zhou Z, Xu Q, Li F Ref: Archives of Insect Biochemistry & Physiology, 90:70, 2015 : PubMed
Ubiquitin, a small protein consisting of 76 amino acids, acts in protein degradation, DNA repair, signal transduction, transcriptional regulation, and receptor control through endocytosis. Using proteomics, we compared the differentially ubiquitinated proteins between a deltamethrin-resistant (DR) strain and a deltamethrin-sensitive (DS) strain in third-instar larvae of the diamondback moth. We used polyubiquitin affinity beads to enrich ubiquitinated proteins and then performed one-dimensional SDS-PAGE separation and mass spectrometric identification. In the DR strain, We found 17 proteins that were upregulated (relative to the DS strain), including carbonic anhydrase family members, ADP ribosylation factor 102F CG11027-PA, protein kinase 61C, phospholipase A2 , dihydrolipoamide dehydrogenase, tyrosine hydroxylase, and heat shock proteins, and five proteins that were downregulated in the DS strain, including carboxylesterase and DNA cytosine-5 methyltransferase. These results were also verified by qPCR. The differentially ubiquitinated proteins/enzymes were mainly responsible for protein binding, catalytic activity, and molecular transducer activity. These results improve our understanding of the relationship between protein ubiquitination and the deltamethrin stress response.
        
Title: Molecular dynamics simulations of acylpeptide hydrolase bound to chlorpyrifosmethyl oxon and dichlorvos Jin H, Zhou Z, Wang D, Guan S, Han W Ref: Int J Mol Sci, 16:6217, 2015 : PubMed
Acylpeptide hydrolases (APHs) catalyze the removal of N-acylated amino acids from blocked peptides. Like other prolyloligopeptidase (POP) family members, APHs are believed to be important targets for drug design. To date, the binding pose of organophosphorus (OP) compounds of APH, as well as the different OP compounds binding and inducing conformational changes in two domains, namely, alpha/beta hydrolase and beta-propeller, remain poorly understood. We report a computational study of APH bound to chlorpyrifosmethyl oxon and dichlorvos. In our docking study, Val471 and Gly368 are important residues for chlorpyrifosmethyl oxon and dichlorvos binding. Molecular dynamics simulations were also performed to explore the conformational changes between the chlorpyrifosmethyl oxon and dichlorvos bound to APH, which indicated that the structural feature of chlorpyrifosmethyl oxon binding in APH permitted partial opening of the beta-propeller fold and allowed the chlorpyrifosmethyl oxon to easily enter the catalytic site. These results may facilitate the design of APH-targeting drugs with improved efficacy.
        
Title: Bioaccumulation of isocarbophos enantiomers from laboratory-contaminated aquatic environment by tubificid worms Liu T, Diao J, Di S, Zhou Z Ref: Chemosphere, 124:77, 2015 : PubMed
The benthic fauna is of great importance to assess the environmental fate of contaminations in aquatic ecosystem. In this study, tubificids were exposed to both laboratory-contaminated aqueous phases and spiked sediment to study the bioaccumulation of isocarbophos (ICP). Two types of spiked sediments were used in the spiked sediment experiment. During the exposure period, an enantioselective bioaccumulation was found in spiked water treatment, with concentrations of the (-)-ICP higher than that of the (+)-ICP, but no enantioselectivity was detected in the spiked sediment treatments. However, different bioaccumulation patterns were observed in the two spiked sediment treatments. Results showed that for spiked forest field sediment (FF sediment) incubation, bioaccumulation was governed by the concentrations in soil. Whereas ICP was bioaccumulated dominantly from overlying water in spiked Chagan Lake sediment (CG sediment) test. The dissipation rates were proved different in the two sediments and ICP dissipated much faster in CG sediment than that in FF sediment. Significant difference in ICP's half-life was also observed between worm-present and worm-free treatments in FF sediment. The detections of concentrations in overlying water indicated that much more ICP diffused to aquatic phase with the present of tubificids.
        
Title: A Novel Lipase as Aquafeed Additive for Warm-Water Aquaculture Ran C, He S, Yang Y, Huang L, Zhou Z Ref: PLoS ONE, 10:e0132049, 2015 : PubMed
A novel Acinetobacter lipase gene lipG1was cloned from DNA extracted from intestinal sample of common carp (Cyprinus carpio), and expressed in E. coli BL21. The encoded protein was 406 amino acids in length. Phylogenetic analysis indicated that LipG1 and its relatives comprised a novel group of true lipases produced by Gram-negative bacteria. LipG1 showed maximal activity at 40 and pH 8.0 when pNP decanoate (C10) was used as the substrate, and remained high activity between 20 and 35. Activity of the lipase was promoted by Ca2+ and Mg2+, and inhibited by Zn2+ and Cu2+. Moreover, LipG1 is stable with proteases, most commercial detergents and organic solvents. Substrate specificity test indicated that LipG1can hydrolyse pNP esters with acyl chain length from C2 to C16, with preference for medium-chain pNP esters (C8, C10). Lastly, LipG1was evaluated as an aquafeed additive for juvenile common carp (Cyprinus carpio). Results showed that supplementation of LipG1significantly improved the gut and heptaopancreas lipase activity of fish fed with palm oil diet. Consistently, improved feed conversion ratio and growth performance were recorded in the LipG1 feeding group, to levels comparable to the group of fish fed with soybean oil diet. Collectively, LipG1 exhibited good potential as an aquafeed additive enzyme, and deserves further characterization as the representative of a novel group of lipases.
        
Title: Whole-genome optical mapping and finished genome sequence of Sphingobacterium deserti sp. nov., a new species isolated from the Western Desert of China Teng C, Zhou Z, Molnar I, Li X, Tang R, Chen M, Wang L, Su S, Zhang W, Lin M Ref: PLoS ONE, 10:e0122254, 2015 : PubMed
A novel Gram-negative bacterium, designated ZWT, was isolated from a soil sample of the Western Desert of China, and its phenotypic properties and phylogenetic position were investigated using a polyphasic approach. Growth occurred on TGY medium at 5-42 degreesC with an optimum of 30 degreesC, and at pH 7.0-11.0 with an optimum of pH 9.0. The predominant cellular fatty acids were summed feature 3 (C16:1omega7c/C16:1omega6c or C16:1omega6c/C16:1omega7c) (39.22%), iso-C15:0 (27.91%), iso-C17:0 3OH (15.21%), C16:0 (4.98%), iso-C15:0 3OH (3.03%), C16:0 3OH (5.39%) and C14:0 (1.74%). The major polar lipid of strain ZWT is phosphatidylethanolamine. The only menaquinone observed was MK-7. The GC content of the DNA of strain ZWT is 44.9 mol%. rDNA phylogeny, genome relatedness and chemotaxonomic characteristics all indicate that strain ZWT represents a novel species of the genus Sphingobacterium. We propose the name S. deserti sp. nov., with ZWT (= KCTC 32092T = ACCC 05744T) as the type strain. Whole genome optical mapping and next-generation sequencing was used to derive a finished genome sequence for strain ZWT, consisting of a circular chromosome of 4,615,818 bp in size. The genome of strain ZWT features 3,391 protein-encoding and 48 tRNA-encoding genes. Comparison of the predicted proteome of ZWT with those of other sphingobacteria identified 925 species-unique proteins that may contribute to the adaptation of ZWT to its native, extremely arid and inhospitable environment. As the first finished genome sequence for any Sphingobacterium, our work will serve as a useful reference for subsequent sequencing and mapping efforts for additional strains and species within this genus.
        
Title: Death receptor and mitochondria-mediated hepatocyte apoptosis underlies liver dysfunction in rats exposed to organic pollutants from drinking water Yang G, Zhou Z, Cen Y, Gui X, Zeng Q, Ao Y, Li Q, Wang S, Li J, Zhang A Ref: Drug Des Devel Ther, 9:4719, 2015 : PubMed
Persistent organic pollutants in drinking water impose a substantial risk to the health of human beings, but the evidence for liver toxic effect and the underlying mechanism is scarce. This study aimed to examine the liver toxicity and elucidate the molecular mechanism of organic pollutants in drinking water in normal human liver cell line L02 cells and rats. The data showed that organic extraction from drinking water remarkably impaired rat liver function, evident from the increase in the serum level of alanine aminotransferase, aspartate aminotransferase, and cholinesterase, and decrease in the serum level of total protein and albumin. Organic extraction dose-dependently induced apoptotic cell death in rat liver and L02 cells. Administration of rats with organic extraction promoted death receptor signaling pathway through the increase in gene and protein expression level of Fas and FasL. Treatment of rats with organic extraction also induced mitochondria-mediated apoptosis via increasing the expression level of proapoptotic protein, Bax, but decreasing the expression level of antiapoptotic protein, Bcl-2, resulting in an upregulation of cytochrome c and activation of caspase cascade at both transcriptional and post-transcriptional levels. Moreover, organic extraction enhanced rat liver glutathione S-transferases activity and reactive oxygen species generation, and upregulated aryl hydrocarbon receptor and glutathione S-transferase A1 at both transcriptional and translational levels. Collectively, the results indicate that organic extraction from drinking water impairs liver function, with the involvement of death receptor and mitochondria-mediated apoptosis in rats. The results provide evidence and molecular mechanisms for organic pollutants in drinking water-induced liver dysfunction, which may help prevent and treat organic extraction-induced liver injury.
The genetic manipulation of the laboratory mouse has been well developed and generated more and more mouse lines for biomedical research. To advance our science exploration, it is necessary to share genetically modified mouse lines with collaborators between institutions, even in different countries. The transfer process is complicated. Significant paperwork and coordination are required, concerning animal welfare, intellectual property rights, colony health status, and biohazard. Here, we provide a practical example of importing a transgenic mice line, Dynamin 1 knockout mice, from Yale University in the USA to Perking University in China for studying cell secretion. This example including the length of time that required for paper work, mice quarantine at the receiving institution, and expansion of the mouse line for experiments. The procedure described in this paper for delivery live transgenic mice from USA to China may serve a simple reference for transferring mouse lines between other countries too.
The locus coeruleus (LC) is an important brainstem area involved in cocaine addiction. However, evidence to elucidate how cocaine modulates the activity of LC neurons remains incomplete. Here, we performed whole recordings in brain slices to evaluate the effects of cocaine on the sodium (Na(+)), potassium (K(+)), calcium (Ca(2+)) channels, and glutamatergic synaptic transmission in the locus coeruleus neurons. Local application of cocaine significantly and reversibly reduced the spontaneous firing rate but did not affect action potential amplitude, rising time, decay time, or half width of noradrenergic locus coeruleus neurons. Moreover, cocaine attenuated the sodium current but did not affect potassium and calcium currents. The N-methyl-D-aspartate receptor mediated excitatory postsynaptic currents were reduced by neuropeptide galanin but not cocaine. All those data demonstrate that cocaine has inhibitory effect on the spontaneous activities and sodium current in locus coeruleus neurons. Therefore, neuromodulation of sodium channel in locus coeruleus neurons may play an important role in drug addiction.
        
Title: Acetylcholine modulates the immune response in Zhikong scallop Chlamys farreri Shi X, Wang L, Zhou Z, Liu R, Li Y, Song L Ref: Fish Shellfish Immunol, 38:204, 2014 : PubMed
Acetylcholine (ACh) is an indispensable neurotransmitter and neuromodulator in the cholinergic nervous system and it is implicated in the dynamic modulation of immune response in vertebrates. Although ACh has also been identified in most invertebrates, the knowledge about its immunomodulation is still limited. In the present study, the immunoreactivities of ACh and acetylcholinesterase (AChE) were observed in all the tested tissues of scallop Chlamys farreri, including adductor muscle, mantle, gill, hepatopancreas, kidney and gonad. The ACh concentration in the supernate of scallop hemolymph increased from 11.59 +/- 0.27 to 14.36 +/- 0.17 muM L-1 at 6 h after LPS (0.5 mg ml-1) stimulation, and increased to 15.51 +/- 1.20 muM L-1 at 3 h after the stimulation of tumor necrosis factor alpha (TNF-alpha) (50 ng ml-1). After LPS stimulation, the mRNA expression levels of superoxide dismutase (CfSOD), catalase (CfCAT) and lysozyme (CfLYZ) in hemocytes increased significantly at 3 h (P < 0.05), 6 h (P < 0.05) and 12 h (P < 0.05), respectively. Compared with the LPS treatment, the induction of CfSOD, CfCAT and CfLYZ expression in hemocytes was repressed effectively (P < 0.05) by the co-stimulation of LPS and ACh (5 x 10-7 M) at 3 h (P < 0.05), 6 h (P < 0.05) and 12 h (P < 0.05), respectively. Furthermore, the expression level of CfCAT in hemocytes increased significantly after 12 h by the co-stimulation with LPS and ACh (P < 0.05). These results indicated collectively that the scallop cholinergic nervous system could be activated by immune stimulations, and it might play an essential role in immunomodulation of scallops.
BACKGROUND: Acetylcholinesterase (AChE) mainly functions as an efficient terminator for acetylcholine signaling transmission. Here, we reported the effect of AChE on gastric cancer therapy. METHODS: The expression of AChE in gastric cancerous tissues and adjacent non-cancerous tissues was examined by immunohistochemistry. Gastric cancer cells were treated with AChE delivered by replication-deficient adenoviral vector (Ad.AChE) or oncolytic adenoviral vector (ZD55-AChE), respectively, followed by measurement of cell viability and apoptosis by MTT assay and apoptosis detection assays. In vivo, the tumor growth of gastric cancer xenografts in mice treated with Ad.AChE or ZD55-AChE (1 x 109 PFU) were measured. In addition, the cell viability of gastric cancer stem cells treated with Ad.AChE or ZD55-AChE were evaluated by MTT assay. RESULTS: A positive correlation was found between higher level of AChE expression in gastric cancer patient samples and longer survival time of the patients. Ad.AChE and ZD55-AChE inhibited gastric cancer cell growth, and low dose of ZD55-AChE induced mitochondrial pathway of apoptosis in cells. ZD55-AChE repressed tumor growth in vivo, and the anti-tumor efficacy is greater than Ad.AChE. Moreover, ZD55-AChE suppressed the growth of gastric cancer stem cells. CONCLUSION: ZD55-AChE represented potential therapeutic effect for human gastric cancer.
The widespread use of antibiotics in association with high-density clinical care has driven the emergence of drug-resistant bacteria that are adapted to thrive in hospitalized patients. Of particular concern are globally disseminated methicillin-resistant Staphylococcus aureus (MRSA) clones that cause outbreaks and epidemics associated with health care. The most rapidly spreading and tenacious health-care-associated clone in Europe currently is EMRSA-15, which was first detected in the UK in the early 1990s and subsequently spread throughout Europe and beyond. Using phylogenomic methods to analyze the genome sequences for 193 S. aureus isolates, we were able to show that the current pandemic population of EMRSA-15 descends from a health-care-associated MRSA epidemic that spread throughout England in the 1980s, which had itself previously emerged from a primarily community-associated methicillin-sensitive population. The emergence of fluoroquinolone resistance in this EMRSA-15 subclone in the English Midlands during the mid-1980s appears to have played a key role in triggering pandemic spread, and occurred shortly after the first clinical trials of this drug. Genome-based coalescence analysis estimated that the population of this subclone over the last 20 yr has grown four times faster than its progenitor. Using comparative genomic analysis we identified the molecular genetic basis of 99.8% of the antimicrobial resistance phenotypes of the isolates, highlighting the potential of pathogen genome sequencing as a diagnostic tool. We document the genetic changes associated with adaptation to the hospital environment and with increasing drug resistance over time, and how MRSA evolution likely has been influenced by country-specific drug use regimens.
BACKGROUND: The sequences of the 16S rRNA genes extracted from fecal samples provide insights into the dynamics of fecal microflora. This potentially gives valuable etiological information for patients whose conditions have been ascribed to unknown pathogens, which cannot be accomplished using routine culture methods. We studied 33 children with diarrhea who were admitted to the Children's Hospital in Shanxi Province during 2006. RESULTS: Nineteen of 33 children with diarrhea could not be etiologically diagnosed by routine culture and polymerase chain reaction methods. Eleven of 19 children with diarrhea of unknown etiology had Streptococcus as the most dominant fecal bacterial genus at admission. Eight of nine children whom three consecutive fecal samples were collected had Streptococcus as the dominant fecal bacterial genus, including three in the Streptococcus bovis group and three Streptococcus sp., which was reduced during and after recovery. We isolated strains that were possibly from the S. bovis group from feces sampled at admission, which were then identified as Streptococcus lutetiensis from one child and Streptococcus gallolyticus subsp. pasteurianus from two children. We sequenced the genome of S. lutetiensis and identified five antibiotic islands, two pathogenicity islands, and five unique genomic islands. The identified virulence genes included hemolytic toxin cylZ of Streptococcus agalactiae and sortase associated with colonization of pathogenic streptococci. CONCLUSIONS: We identified S. lutetiensis and S. gallolyticus subsp. pasteurianus from children with diarrhea of unknown etiology, and found pathogenic islands and virulence genes in the genome of S. lutetiensis.
Sleep is an essential and evolutionarily conserved behavior that is closely related to synaptic function. However, whether neuroligins (Nlgs), which are cell adhesion molecules involved in synapse formation and synaptic transmission, are involved in sleep is not clear. Here, we show that Drosophila Nlg4 (DNlg4) is highly expressed in large ventral lateral clock neurons (l-LNvs) and that l-LNv-derived DNlg4 is essential for sleep regulation. GABA transmission is impaired in mutant l-LNv, and sleep defects in dnlg4 mutant flies can be rescued by genetic manipulation of GABA transmission. Furthermore, dnlg4 mutant flies exhibit a severe reduction in GABAA receptor RDL clustering, and DNlg4 associates with RDLs in vivo. These results demonstrate that DNlg4 regulates sleep through modulating GABA transmission in l-LNvs, which provides the first known link between a synaptic adhesion molecule and sleep in Drosophila.
Many Penicillium species could produce extracellular enzyme systems with good lignocellulose hydrolysis performance. However, these species and their enzyme systems are still poorly understood and explored due to the lacking of genetic information. Here, we present the genomic and secretomic analyses of Penicillium decumbens that has been used in industrial production of lignocellulolytic enzymes in China for more than fifteen years. Comparative genomics analysis with the phylogenetically most similar species Penicillium chrysogenum revealed that P. decumbens has evolved with more genes involved in plant cell wall degradation, but fewer genes in cellular metabolism and regulation. Compared with the widely used cellulase producer Trichoderma reesei, P. decumbens has a lignocellulolytic enzyme system with more diverse components, particularly for cellulose binding domain-containing proteins and hemicellulases. Further, proteomic analysis of secretomes revealed that P. decumbens produced significantly more lignocellulolytic enzymes in the medium with cellulose-wheat bran as the carbon source than with glucose. The results expand our knowledge on the genetic information of lignocellulolytic enzyme systems in Penicillium species, and will facilitate rational strain improvement for the production of highly efficient enzyme systems used in lignocellulose utilization from Penicillium species.
Salmonella enterica serovar Agona has caused multiple food-borne outbreaks of gastroenteritis since it was first isolated in 1952. We analyzed the genomes of 73 isolates from global sources, comparing five distinct outbreaks with sporadic infections as well as food contamination and the environment. Agona consists of three lineages with minimal mutational diversity: only 846 single nucleotide polymorphisms (SNPs) have accumulated in the non-repetitive, core genome since Agona evolved in 1932 and subsequently underwent a major population expansion in the 1960s. Homologous recombination with other serovars of S. enterica imported 42 recombinational tracts (360 kb) in 5/143 nodes within the genealogy, which resulted in 3,164 additional SNPs. In contrast to this paucity of genetic diversity, Agona is highly diverse according to pulsed-field gel electrophoresis (PFGE), which is used to assign isolates to outbreaks. PFGE diversity reflects a highly dynamic accessory genome associated with the gain or loss (indels) of 51 bacteriophages, 10 plasmids, and 6 integrative conjugational elements (ICE/IMEs), but did not correlate uniquely with outbreaks. Unlike the core genome, indels occurred repeatedly in independent nodes (homoplasies), resulting in inaccurate PFGE genealogies. The accessory genome contained only few cargo genes relevant to infection, other than antibiotic resistance. Thus, most of the genetic diversity within this recently emerged pathogen reflects changes in the accessory genome, or is due to recombination, but these changes seemed to reflect neutral processes rather than Darwinian selection. Each outbreak was caused by an independent clade, without universal, outbreak-associated genomic features, and none of the variable genes in the pan-genome seemed to be associated with an ability to cause outbreaks.
The ambient resting dopamine (DA) concentration in brain regulates cognition and motivation. Despite its importance, resting DA level in vivo remains elusive. Here, by high-frequency stimulation of the medial forebrain bundle and immediately following the stimulus-induced DA overflow, we recorded a DA "undershoot" which is a temporal reduction of DA concentration to a level below the baseline. Based on the DA undershoot, we predicted a resting DA concentration of approximately 73nM in rat striatum in vivo. Simulation studies suggested that removing basal DA by DAT during the post-stimulation inhibition of tonic DA release caused the DA undershoot, and the resting concentration of DA modulated the kinetics of the evoked DA transient. The DA undershoot was eliminated by either blocking D2 receptors with haloperidol or blocking the DA transporter (DAT) with cocaine. Therefore, the impulse-dependent resting DA concentration is in the tens of nanomolar range and is modulated by the presynaptic D2 receptors and the DAT in vivo.
        
Title: A novel non-homologous recombination-mediated mechanism for Escherichia coli unilateral flagellar phase variation Liu B, Hu B, Zhou Z, Guo D, Guo X, Ding P, Feng L, Wang L Ref: Nucleic Acids Research, 40:4530, 2012 : PubMed
Flagella contribute to the virulence of bacteria through chemotaxis, adhesion to and invasion of host surfaces. Flagellar phase variation is believed to facilitate bacterial evasion of the host immune response. In this study, the flnA gene that encodes Escherichia coli H17 flagellin was examined by whole genome sequencing and genetic deletion analysis. Unilateral flagellar phase variation has been reported in E. coli H3, H47 and H17 strains, although the mechanism for phase variation in the H17 strain has not been previously understood. Analysis of phase variants indicated that the flagellar phase variation in the H17 strain was caused by the deletion of an approximately 35 kb DNA region containing the flnA gene from diverse excision sites. The presence of covalently closed extrachromosomal circular forms of this excised 35 kb region was confirmed by the two-step polymerase chain reaction. The deletion and complementation test revealed that the Int1157 integrase, a tyrosine recombinase, mediates the excision of this region. Unlike most tyrosine recombinases, Int1157 is suggested to recognize diverse sites and mediate recombination between non-homologous DNA sequences. This is the first report of non-homologous recombination mediating flagellar phase variation.
BACKGROUND: Upon the completion of whole genome sequencing, thorough genome annotation that associates genome sequences with biological meanings is essential. Genome annotation depends on the availability of transcript information as well as orthology information. In teleost fish, genome annotation is seriously hindered by genome duplication. Because of gene duplications, one cannot establish orthologies simply by homology comparisons. Rather intense phylogenetic analysis or structural analysis of orthologies is required for the identification of genes. To conduct phylogenetic analysis and orthology analysis, full-length transcripts are essential. Generation of large numbers of full-length transcripts using traditional transcript sequencing is very difficult and extremely costly. RESULTS: In this work, we took advantage of a doubled haploid catfish, which has two sets of identical chromosomes and in theory there should be no allelic variations. As such, transcript sequences generated from next-generation sequencing can be favorably assembled into full-length transcripts. Deep sequencing of the doubled haploid channel catfish transcriptome was performed using Illumina HiSeq 2000 platform, yielding over 300 million high-quality trimmed reads totaling 27 Gbp. Assembly of these reads generated 370,798 non-redundant transcript-derived contigs. Functional annotation of the assembly allowed identification of 25,144 unique protein-encoding genes. A total of 2,659 unique genes were identified as putative duplicated genes in the catfish genome because the assembly of the corresponding transcripts harbored PSVs or MSVs (in the form of pseudo-SNPs in the assembly). Of the 25,144 contigs with unique protein hits, around 20,000 contigs matched 50% length of reference proteins, and over 14,000 transcripts were identified as full-length with complete open reading frames. The characterization of consensus sequences surrounding start codon and the stop codon confirmed the correct assembly of the full-length transcripts. CONCLUSIONS: The large set of transcripts assembled in this study is the most comprehensive set of genome resources ever developed from catfish, which will provide the much needed resources for functional genome research in catfish, serving as a reference transcriptome for genome annotation, analysis of gene duplication, gene family structures, and digital gene expression analysis. The putative set of duplicated genes provide a starting point for genome scale analysis of gene duplication in the catfish genome, and should be a valuable resource for comparative genome analysis, genome evolution, and genome function studies.
        
Title: Enantioselective toxicological response of the green alga Scenedesmus obliquus to isocarbophos Lu D, Huang L, Diao J, Zhou Z Ref: Chirality, 24:481, 2012 : PubMed
Chiral compounds usually behave enantioselectively in phyto-biochemical processes. Isocarbophos (ICP) is a chiral pesticide that is widely used. To evaluate the toxicological response of ICP and its enantiomers to Scenedesmus obliquus, algal growth, total chlorophyll, total soluble protein, and the superoxide anion radicals (O(2)(*-)) were investigated. The microalgae were treated with ICP and its enantiomers at 0.01-10 mg/l for 96 h. The growth of S. obliquus was stimulated at low levels of ICP and its enantiomers (0.01-1 mg/l), but all were inhibited at high concentrations (10 mg/l). The total soluble protein content and total chlorophyll content of the tested green alga S. obliquus gradually increased, depending on the growth of algal cells in the medium. Meanwhile, the content of O(2)(*-) was decreased. Interestingly, the cell number and content of the chlorophylls and protein decreased with increasing levels of concentration, whereas O(2)(*-) increased. Our results indicated that enantioselectivity was observed in the dose-response of ICP and its enantiomers in S. obliquus. The high O(2)(*-) level might lead to the death of S. obliquus. The stimulation of growth suggests a regulatory mechanism that is related to the capability of the algae to adapt to the O(2)(*-).
BACKGROUND: Acetycholinesterase (AChE; EC 3.1.1.7) is an essential hydrolytic enzyme in the cholinergic nervous system, which plays an important role during immunomodulation in vertebrates. Though AChEs have been identified in most invertebrates, the knowledge about immunomodulation function of AChE is still quite meagre in invertebrates. METHODOLOGY: A scallop AChE gene was identified from Chlamys farreri (designed as CfAChE), and its open reading frame encoded a polypeptide of 522 amino acids. A signal peptide, an active site triad, the choline binding site and the peripheral anionic sites (PAS) were identified in CfAChE. The recombinant mature polypeptide of CfAChE (rCfAChE) was expressed in Pichia pastoris GS115, and its activity was 71.3+/-1.3 U mg(-1) to catalyze the hydrolysis of acetylthiocholine iodide. The mRNA transcripts of CfAChE were detected in haemocytes, hepatopancreas, adductor muscle, mantle, gill, kidney and gonad, with the highest expression level in hepatopancreas. The relative expression level of CfAChE mRNA in haemocytes was both up-regulated after LPS (0.5 mg mL(-1)) and human TNF-alpha (50 ng mL(-1)) stimulations, and it reached the highest level at 12 h (10.4-fold, P<0.05) and 1 h (3.2-fold, P<0.05), respectively. After Dichlorvos (DDVP) (50 mg L(-1)) stimulation, the CfAChE activity in the supernatant of haemolymph decreased significantly from 0.16 U mg(-1) at 0 h to 0.03 U mg(-1) at 3 h, while the expression level of lysozyme in the haemocytes was up-regulated and reached the highest level at 6 h, which was 3.0-fold (P<0.05) of that in the blank group. CONCLUSIONS: The results collectively indicated that CfAChE had the acetylcholine-hydrolyzing activity, which was in line with the potential roles of AChE in the neuroimmune system of vertebrates which may help to re-balance the immune system after immune response.
Mycoplasma iowae is associated mainly with reduced hatchability in turkeys and is well known for the unusual ability of phenotypic variation in the Mycoplasma surface components as well as a relative resistance to heat, bile salts, and many antimicrobials. A subset of unique genes and a gene cluster responsible for these characteristics could be identified from the genome. Here, we report the first genome sequence of this species.
An Escherichia coli O157:H7 outbreak in China in 1999 caused 177 deaths due to hemolytic uremic syndrome. Sixteen outbreak associated isolates were found to belong to a new clone, sequence type 96 (ST96), based on multilocus sequence typing of 15 housekeeping genes. Whole genome sequencing of an outbreak isolate, Xuzhou21, showed that the isolate is phylogenetically closely related to the Japan 1996 outbreak isolate Sakai, both of which share the most recent common ancestor with the US outbreak isolate EDL933. The levels of IL-6 and IL-8 of peripheral blood mononuclear cells induced by Xuzhou21 and Sakai were significantly higher than that induced by EDL933. Xuzhou21 also induced a significantly higher level of IL-8 than Sakai while both induced similar levels of IL-6. The expression level of Shiga toxin 2 in Xuzhou21 induced by mitomycin C was 68.6 times of that under non-inducing conditions, twice of that induced in Sakai (32.7 times) and 15 times higher than that induced in EDL933 (4.5 times). Our study shows that ST96 is a novel clone and provided significant new insights into the evolution of virulence of E. coli O157:H7.
        
Title: Chlorpyrifos exposure causes alternation in dopamine metabolism in PC12 cells Xu F, Chang X, Lou D, Wu Q, Zhou Z Ref: Toxicol Mech Methods, 22:309, 2012 : PubMed
Chlorpyrifos (CPF) is one of the organophosphorus pesticides widely used around the world, especially in China. Acetylcholinesterase inhibition is the main effect of organophosphorus insecticides exposure. Studies showed that CPF may also interfere with the metabolism of monoamine transmitters. To investigate the effects of CPF on dopaminergic pathway, the dopamine content, gene expression of catechol-O-methyl- transferase (COMT), vesicular monoamine transporter-2 (VMAT-2), and monoamine oxidase (MAO) and its activity in PC12 cells exposed to CPF was determined. Results showed that cell viability was decreased and total dopamine concentration was increased with CPF administration in a dose-dependent pattern. Gene of MAO was significantly downregulated in PC12 cells, while genes of COMT and VMAT-2 in PC12 cells did not show any change after CPF exposure. The MAO activity was decreased following incubation exposed to CPF. These results suggest that CPF may interfere with dopaminergic pathway through inhibition on gene and protein expression of MAO in vitro.
The desert is an excellent model for studying evolution under extreme environments. We present here the complete genome and ultraviolet (UV) radiation-induced transcriptome of Deinococcus gobiensis I-0, which was isolated from the cold Gobi desert and shows higher tolerance to gamma radiation and UV light than all other known microorganisms. Nearly half of the genes in the genome encode proteins of unknown function, suggesting that the extreme resistance phenotype may be attributed to unknown genes and pathways. D. gobiensis also contains a surprisingly large number of horizontally acquired genes and predicted mobile elements of different classes, which is indicative of adaptation to extreme environments through genomic plasticity. High-resolution RNA-Seq transcriptome analyses indicated that 30 regulatory proteins, including several well-known regulators and uncharacterized protein kinases, and 13 noncoding RNAs were induced immediately after UV irradiation. Particularly interesting is the UV irradiation induction of the phrB and recB genes involved in photoreactivation and recombinational repair, respectively. These proteins likely include key players in the immediate global transcriptional response to UV irradiation. Our results help to explain the exceptional ability of D. gobiensis to withstand environmental extremes of the Gobi desert, and highlight the metabolic features of this organism that have biotechnological potential.
        
Title: Fullerene antioxidants decrease organophosphate-induced acetylcholinesterase inhibition in vitro Ehrich M, Van Tassell R, Li Y, Zhou Z, Kepley CL Ref: Toxicol In Vitro, 25:301, 2011 : PubMed
Although organophosphate (OP)-induced acetylcholinesterase (AChE) inhibition is the critical mechanism causing toxicities that follow exposure, other biochemical events, including oxidative stress, have been reported to contribute to OP toxicity. Fullerenes are carbon spheres with antioxidant activity. Thus, we hypothesized that fullerenes could counteract the effects of OP compounds and tested this hypothesis using two in vitro test systems, hen brain and human neuroblastoma SH-SY5Y cells. Cells were incubated with eight different derivatized fullerene compounds before challenge with paraoxon (0=control, 5x10(-8), 10(-7), 2x10(-7) or 5x10(-7) M) or diisopropylphosphorofluoridate (DFP, 0=control, 5x10(-6), 10(-5), 2x10(-5), and 5x10(-5) M) and measurement of AChE activities. Activities of brain and SH-SY5Y AChE with OP compounds alone ranged from 55-83% lower than non-treated controls after paraoxon and from 60-92% lower than non-treated controls after DFP. Most incubations containing 1 and 10 muM fullerene derivatives brought AChE activity closer to untreated controls, with improvements in AChE activity often >20%. Using dissipation of superoxide anion radicals as an indicator (xanthine oxidation as a positive control), all fullerene derivatives demonstrated significant antioxidant capability in neuroblastoma cells at 1 muM concentrations. No fullerene derivative at 1 muM significantly affected neuroblastoma cell viability, when determined using either Alamar Blue dye retention or a luminescent assay for ATP production. These studies suggest that derivatized fullerene nanomaterials have potential capability to ameliorate OP-induced AChE inhibition resulting in toxicities.
Mycoplasma anatis, a member of the class Mollicutes, is the causative agent of a contagious infectious disease of domestic ducklings, wild birds, and eggs. Increasing reports show that coinfection of M. anatis with Escherichia coli results in substantial economic impacts on the duck farms in China. Here, we announce the first genome sequence of M. anatis.
Aeromonas veronii strain B565 was isolated from aquaculture pond sediment in China. We present here the complete genome sequence of B565 and compare it with 2 published genome sequences of pathogenic strains in the Aeromonas genus. The result represents an independent stepwise acquisition of virulence factors of pathogenic strains in this genus.
Ketogulonicigenium vulgare is an industrial organism commonly used in the vitamin C industry. Here, we report the finished, annotated, and compared 3.28-Mbp high-quality genome sequence of Ketogulonicigenium vulgare WSH-001, a 2-keto-l-gulonic acid-producing industrial strain stocked in our laboratory.
Mycoplasma hyopneumoniae strain 168, a pathogenic strain prevalent in China, was isolated in 1974. Although this strain has been widespread for a long time, the genome sequence had not been determined. Here, we announce the complete genome sequence of M. hyopneumoniae strain 168.
Bacillus megaterium, an industrial strain, has been widely used in protein production and the vitamin C industry. Here we reported a finished, annotated, and compared 4.14-Mbp high-quality genome sequence of B. megaterium WSH-002, which is the companion strain for Ketogulonicigenium vulgare in the vitamin C industry and is stocked in our laboratory.
        
Title: Two-step synthesis of fatty acid ethyl ester from soybean oil catalyzed by Yarrowia lipolytica lipase Meng Y, Wang G, Yang N, Zhou Z, Li Y, Liang X, Chen J, Li J Ref: Biotechnol Biofuels, 4:6, 2011 : PubMed
BACKGROUND: Enzymatic biodiesel production by transesterification in solvent media has been investigated intensively, but glycerol, as a by-product, could block the immobilized enzyme and excess n-hexane, as a solution aid, would reduce the productivity of the enzyme. Esterification, a solvent-free and no-glycerol-release system for biodiesel production, has been developed, and two-step catalysis of soybean oil, hydrolysis followed by esterification, with Yarrowia lipolytica lipase is reported in this paper. RESULTS: First, soybean oil was hydrolyzed at 40 degrees C by 100 U of lipase broth per 1 g of oil with approximately 30% to 60% (vol/vol) water. The free fatty acid (FFA) distilled from this hydrolysis mixture was used for the esterification of FFA to fatty acid ethyl ester by immobilized lipase. A mixture of 2.82 g of FFA and equimolar ethanol (addition in three steps) were shaken at 30 degrees C with 18 U of lipase per 1 gram of FFA. The degree of esterification reached 85% after 3 hours. The lipase membranes were taken out, dehydrated and subjected to fresh esterification so that over 82% of esterification was maintained, even though the esterification was repeated every 3 hours for 25 batches. CONCLUSION: The two-step enzymatic process without glycerol released and solvent-free demonstrated higher efficiency and safety than enzymatic transesterification, which seems very promising for lipase-catalyzed, large-scale production of biodiesel, especially from high acid value waste oil.
Although over 50 complete Escherichia coli/Shigella genome sequences are available, it is only for closely related strains, for example the O55:H7 and O157:H7 clones of E. coli, that we can assign differences to individual evolutionary events along specific lineages. Here we sequence the genomes of 14 isolates of a uropathogenic E. coli clone that persisted for 3 years within a household, including a dog, causing a urinary tract infection (UTI) in the dog after 2 years. The 20 mutations observed fit a single tree that allows us to estimate the mutation rate to be about 1.1 per genome per year, with minimal evidence for adaptive change, including in relation to the UTI episode. The host data also imply at least 6 host transfer events over the 3 years, with 2 lineages present over much of that period. To our knowledge, these are the first direct measurements for a clone in a well-defined host community that includes rates of mutation and host transmission. There is a concentration of non-synonymous mutations associated with 2 transfers to the dog, suggesting some selection pressure from the change of host. However, there are no changes to which we can attribute the UTI event in the dog, which suggests that this occurrence after 2 years of the clone being in the household may have been due to chance, or some unknown change in the host or environment. The ability of a UTI strain to persist for 2 years and also to transfer readily within a household has implications for epidemiology, diagnosis, and clinical intervention.
Streptococcus thermophilus strain ND03 is a Chinese commercial dairy starter used for the manufacture of yogurt. It was isolated from naturally fermented yak milk in Qinghai, China. We present here the complete genome sequence of ND03 and compare it to three other published genomes of Streptococcus thermophilus strains.
        
Title: Complete genome sequence of a Yersinia enterocolitica Old World (3/O:9) strain and comparison with the New World (1B/O:8) strain Wang X, Li Y, Jing H, Ren Y, Zhou Z, Wang S, Kan B, Xu J, Wang L Ref: J Clin Microbiol, 49:1251, 2011 : PubMed
Yersinia enterocolitica is a heterogeneous bacterial species with a wide range of animal reservoirs through which human intestinal illness can be facilitated. In contrast to the epidemiological pattern observed in the United States, infections in China present a pattern similar to those in European countries and Japan, wherein "Old World" strains (biotypes 2 to 5) are prevalent. To gain insights into the evolution of Y. enterocolitica and pathogenic properties toward human hosts, we sequenced the genome of a biotype 3 strain, 105.5R(r) (O:9), obtained from a Chinese patient. Comparative genome sequence analysis with strain 8081 (1B/O:8) revealed new insights into Y. enterocolitica. Both strains have more than 14% specific genes. In strain 105.5R(r), putative virulence factors were found in strain-specific genomic pathogenicity islands that comprised a novel type III secretion system and rtx-like genes. Many of the loci representing ancestral clusters, which are believed to contribute to enteric survival and pathogenesis, are present in strain 105.5R(r) but lost in strain 8081. Insertion elements in 105.5R(r) have a pattern distinct from those in strain 8081 and were exclusively located in a strain-specific region. In summary, our comparative genome analysis indicates that these two strains may have attained their pathogenicity by completely separate evolutionary events, and the 105.5R(r) strain, a representative of the Old World biogroup, lies in a branch of Y. enterocolitica that is distinct from the "New World" 8081 strain.
Genome analysis of Acinetobacter calcoaceticus PHEA-2 was undertaken because of the importance of this bacterium for bioremediation of phenol-polluted water and because of the close phylogenetic relationship of this species with the human pathogen Acinetobacter baumannii. To our knowledge, this is the first strain of A. calcoaceticus whose genome has been sequenced.
        
Title: Complete genome sequence of Bordetella pertussis CS, a Chinese pertussis vaccine strain Zhang S, Xu Y, Zhou Z, Wang S, Yang R, Wang J, Wang L Ref: Journal of Bacteriology, 193:4017, 2011 : PubMed
Bordetella pertussis is the causative agent of pertussis. Here, we report the genome sequence of Bordetella pertussis strain CS, isolated from an infant patient in Beijing and widely used as a vaccine strain for production of an acellular pertussis vaccine in China.
Lactobacillus helveticus strain H10 was isolated from traditional fermented milk in Tibet, China. We sequenced the whole genome of strain H10 and compared it to the published genome sequence of Lactobacillus helveticus DPC4571.
Riemerella anatipestifer is a Gram-negative, rod-shaped bacterium associated with epizootic infections in poultry. R. anatipestifer strain RA-YM, belonging to the serotype 1 prevalent in China, is a clinically isolated strain with high-level virulence. Here, we report the first genome sequence of this species.
Mycoplasma hyorhinis is generally considered a swine pathogen yet is most commonly found infecting laboratory cell lines. An increasing body of evidence suggests that chronic infections with M. hyorhinis may cause oncogenic transformation. Here, we announce the complete genome sequence of M. hyorhinis strain HUB-1.
        
Title: Complete genome sequence of Enterobacter cloacae subsp. cloacae type strain ATCC 13047 Ren Y, Zhou Z, Guo X, Li Y, Feng L, Wang L Ref: Journal of Bacteriology, 192:2463, 2010 : PubMed
Enterobacter cloacae is an important nosocomial pathogen. Here, we report the completion of the genome sequence of E. cloacae ATCC 13047, the type strain of E. cloacae subsp. cloacae. Multiple sets of virulence determinant and heavy-metal resistance genes have been found in the genome. To the best of our knowledge, this is the first complete genome sequence of the E. cloacae species.
Bifidobacterium animalis subsp. lactis strain V9 is a Chinese commercial bifidobacteria with several probiotic functions. It was isolated from a healthy Mongolian child in China. We present here the complete genome sequence of V9 and compare it to 3 other published genome sequences of B. animalis subsp. lactis strains. The result indicates the lack of polymorphism among strains of this subspecies from different continents.
Shigella spp. are the causative agent of shigellosis with Shigella flexneri serotype 2a being the most prevalent in developing countries. Epidemiological surveillance in China found that a new serotype of S. flexneri appeared in 2001 and replaced serotype 2a in 2003 as the most prevalent serotype in Henan Province. The new serotype also became the dominant serotype in 7 of the 10 other provinces under surveillance in China by 2007. The serotype was identified as a variant of serotype X. It differs from serotype X by agglutination to the monovalent anti-IV type antiserum and the group antigen-specific monoclonal antibody MASF IV-I. Genome sequencing of a serotype X variant isolate, 2002017, showed that it acquired a Shigella serotype conversion island, also as an SfX bacteriophage, containing gtr genes for type X-specific glucosylation. Multilocus sequence typing of 15 genes from 37 serotype X variant isolates and 69 isolates of eight other serotypes, 1a, 2a, 2b, 3a, 4a, 5b, X, and Y, found that all belong to a new sequence type (ST), ST91. Pulsed-field gel electrophoresis revealed 154 pulse types with 655 S. flexneri isolates analyzed and identified 57 serotype switching events. The data suggest that S. flexneri epidemics in China have been caused by a single epidemic clone, ST91, with frequent serotype switching to evade infection-induced immunity to serotypes to which the population was exposed previously. The clone has also acquired resistance to multiple antibiotics. These findings underscore the challenges to the current vaccine development and control strategies for shigellosis.
There are 29 E. coli genome sequences available, mostly related to studies of species diversity or mode of pathogenicity, including two genomes of the well-known O157:H7 clone. However, there have been no genome studies of closely related clones aimed at exposing the details of evolutionary change. Here we sequenced the genome of an O55:H7 strain, closely related to the major pathogenic O157:H7 clone, with published genome sequences, and undertook comparative genomic and proteomic analysis. We were able to allocate most differences between the genomes to individual mutations, recombination events, or lateral gene transfer events, in specific lineages. Major differences include a type II secretion system present only in the O55:H7 chromosome, fewer type III secretion system effectors in O55:H7, and 19 phage genomes or phagelike elements in O55:H7 compared to 23 in O157:H7, with only three common to both. Many other changes were found in both O55:H7 and O157:H7 lineages, but in general there has been more change in the O157:H7 lineages. For example, we found 50% more synonymous mutational substitutions in O157:H7 compared to O55:H7. The two strains also diverged at the proteomic level. Mutational synonymous SNPs were used to estimate a divergence time of 400 years using a new clock rate, in contrast to 14,000 to 70,000 years using the traditional clock rates. The same approaches were applied to three closely related extraintestinal pathogenic E. coli genomes, and similar levels of mutation and recombination were found. This study revealed for the first time the full range of events involved in the evolution of the O157:H7 clone from its O55:H7 ancestor, and suggested that O157:H7 arose quite recently. Our findings also suggest that E. coli has a much lower frequency of recombination relative to mutation than was observed in a comparable study of a Vibrio cholerae lineage.
        
Title: Genomic sequencing reveals regulatory mutations and recombinational events in the widely used MC4100 lineage of Escherichia coli K-12 Ferenci T, Zhou Z, Betteridge T, Ren Y, Liu Y, Feng L, Reeves PR, Wang L Ref: Journal of Bacteriology, 191:4025, 2009 : PubMed
The genome of an Escherichia coli MC4100 strain with a lambda placMu50 fusion revealed numerous regulatory differences from MG1655, including one that arose during laboratory storage. The 194 mutational differences between MC4100(MuLac) and other K-12 sequences were mostly allocated to specific lineages, indicating the considerable mutational divergence between K-12 strains.
BACKGROUND: Streptococcus suis emerged to cause an unusual outbreak of streptococcal toxic-shock-like syndrome (STSLS) in 2005. The mechanisms involved are unknown. METHODS: Clinical, laboratory, and epidemiologic data on patients infected with culture-confirmed S. suis were analyzed. The strain involved in the outbreak, "epidemic" strain ST7, was compared with both a classical highly pathogenic strain, ST1, and an intermediately pathogenic strain, ST25, to determine both its capacity to induce cytokines in experimentally infected mice and its genomic difference. RESULTS: Of 38 patients infected with culture-confirmed S. suis, 14 presented with STSLS. During the early phase of the disease, serum levels of interleukin (IL)-1beta, IL-6, IL-8, IL-12p70, interferon-gamma, and tumor necrosis factor-alpha were more elevated in patients with STSLS than in those with meningitis only. Serum levels of proinflammatory cytokines were significantly higher in mice infected with ST7 than in those infected with either ST1 or ST25. Genomic comparisons with ST25 showed that ST1 had acquired 132 genomic islands, including 5 pathogenicity islands, and that ST7, the epidemic strain, had acquired an additional 5 genomic islands. CONCLUSION: Intermediately pathogenic strain ST25 has evolved to become highly pathogenic strain ST1, which, in turn, has more recently evolved to become epidemic strain ST7. ST7 has the ability to stimulate the production of massive amounts of proinflammatory cytokines, leading to STSLS.
Cholera, caused by Vibrio cholerae, erupted globally from South Asia in 7 pandemics, but there were also local outbreaks between the 6(th) (1899-1923) and 7(th) (1961-present) pandemics. All the above are serotype O1, whereas environmental or invertebrate isolates are antigenically diverse. The pre 7th pandemic isolates mentioned above, and other minor pathogenic clones, are related to the 7(th) pandemic clone, while the 6(th) pandemic clone is in the same lineage but more distantly related, and non-pathogenic isolates show no clonal structure. To understand the origins and relationships of the pandemic clones, we sequenced the genomes of a 1937 prepandemic strain and a 6(th) pandemic isolate, and compared them with the published 7(th) pandemic genome. We distinguished mutational and recombinational events, and allocated these and other events, to specific branches in the evolutionary tree. There were more mutational than recombinational events, but more genes, and 44 times more base pairs, changed by recombination. We used the mutational single-nucleotide polymorphisms and known isolation dates of the prepandemic and 7(th) pandemic isolates to estimate the mutation rate, and found it to be 100 fold higher than usually assumed. We then used this to estimate the divergence date of the 6(th) and 7(th) pandemic clones to be about 1880. While there is a large margin of error, this is far more realistic than the 10,000-50,000 years ago estimated using the usual assumptions. We conclude that the 2 pandemic clones gained pandemic potential independently, and overall there were 29 insertions or deletions of one or more genes. There were also substantial changes in the major integron, attributed to gain of individual cassettes including copying from within, or loss of blocks of cassettes. The approaches used open up new avenues for analysing the origin and history of other important pathogens.
BACKGROUND: The phylum Verrucomicrobia is a widespread but poorly characterized bacterial clade. Although cultivation-independent approaches detect representatives of this phylum in a wide range of environments, including soils, seawater, hot springs and human gastrointestinal tract, only few have been isolated in pure culture. We have recently reported cultivation and initial characterization of an extremely acidophilic methanotrophic member of the Verrucomicrobia, strain V4, isolated from the Hell's Gate geothermal area in New Zealand. Similar organisms were independently isolated from geothermal systems in Italy and Russia. RESULTS: We report the complete genome sequence of strain V4, the first one from a representative of the Verrucomicrobia. Isolate V4, initially named "Methylokorus infernorum" (and recently renamed Methylacidiphilum infernorum) is an autotrophic bacterium with a streamlined genome of ~2.3 Mbp that encodes simple signal transduction pathways and has a limited potential for regulation of gene expression. Central metabolism of M. infernorum was reconstructed almost completely and revealed highly interconnected pathways of autotrophic central metabolism and modifications of C1-utilization pathways compared to other known methylotrophs. The M. infernorum genome does not encode tubulin, which was previously discovered in bacteria of the genus Prosthecobacter, or close homologs of any other signature eukaryotic proteins. Phylogenetic analysis of ribosomal proteins and RNA polymerase subunits unequivocally supports grouping Planctomycetes, Verrucomicrobia and Chlamydiae into a single clade, the PVC superphylum, despite dramatically different gene content in members of these three groups. Comparative-genomic analysis suggests that evolution of the M. infernorum lineage involved extensive horizontal gene exchange with a variety of bacteria. The genome of M. infernorum shows apparent adaptations for existence under extremely acidic conditions including a major upward shift in the isoelectric points of proteins. CONCLUSION: The results of genome analysis of M. infernorum support the monophyly of the PVC superphylum. M. infernorum possesses a streamlined genome but seems to have acquired numerous genes including those for enzymes of methylotrophic pathways via horizontal gene transfer, in particular, from Proteobacteria. REVIEWERS: This article was reviewed by John A. Fuerst, Ludmila Chistoserdova, and Radhey S. Gupta.
Bombyx mori, the domesticated silkworm, is a major insect model for research, and the first lepidopteran for which draft genome sequences became available in 2004. Two independent data sets from whole-genome shotgun sequencing were merged and assembled together with newly obtained fosmid- and BAC-end sequences. The remarkably improved new assembly is presented here. The 8.5-fold sequence coverage of an estimated 432 Mb genome was assembled into scaffolds with an N50 size of approximately 3.7 Mb; the largest scaffold was 14.5 million base pairs. With help of a high-density SNP linkage map, we anchored 87% of the scaffold sequences to all 28 chromosomes. A particular feature was the high repetitive sequence content estimated to be 43.6% and that consisted mainly of transposable elements. We predicted 14,623 gene models based on a GLEAN-based algorithm, a more accurate prediction than the previous gene models for this species. Over three thousand silkworm genes have no homologs in other insect or vertebrate genomes. Some insights into gene evolution and into characteristic biological processes are presented here and in other papers in this issue. The massive silk production correlates with the existence of specific tRNA clusters, and of several sericin genes assembled in a cluster. The silkworm's adaptation to feeding on mulberry leaves, which contain toxic alkaloids, is likely linked to the presence of new-type sucrase genes, apparently acquired from bacteria. The silkworm genome also revealed the cascade of genes involved in the juvenile hormone biosynthesis pathway, and a large number of cuticular protein genes.
The b1012 operon of Escherichia coli K-12, which is composed of seven unidentified ORFs, is one of the most highly expressed operons under control of nitrogen regulatory protein C. Examination of strains with lesions in this operon on Biolog Phenotype MicroArray (PM3) plates and subsequent growth tests indicated that they failed to use uridine or uracil as the sole nitrogen source and that the parental strain could use them at room temperature but not at 37 degrees C. A strain carrying an ntrB(Con) mutation, which elevates transcription of genes under nitrogen regulatory protein C control, could also grow on thymidine as the sole nitrogen source, whereas strains with lesions in the b1012 operon could not. Growth-yield experiments indicated that both nitrogens of uridine and thymidine were available. Studies with [(14)C]uridine indicated that a three-carbon waste product from the pyrimidine ring was excreted. After trimethylsilylation and gas chromatography, the waste product was identified by mass spectrometry as 3-hydroxypropionic acid. In agreement with this finding, 2-methyl-3-hydroxypropionic acid was released from thymidine. Both the number of available nitrogens and the waste products distinguished the pathway encoded by the b1012 operon from pyrimidine catabolic pathways described previously. We propose that the genes of this operon be named rutA-G for pyrimidine utilization. The product of the divergently transcribed gene, b1013, is a tetracycline repressor family regulator that controls transcription of the b1012 operon negatively.
        
Title: Interdomain communication between the thiolation and thioesterase domains of EntF explored by combinatorial mutagenesis and selection Zhou Z, Lai JR, Walsh CT Ref: Chemical Biology, 13:869, 2006 : PubMed
Thiolation (T) domains are protein way stations in natural product assembly lines. In the enterobactin synthetase, the T domain on EntF is recognized in cis by its catalytic partners: the EntF condensation (C), adenylation (A), and thioesterase (TE) domains. To assess surface features of the EntF T domain recognized by C, A, and TE, regions of the EntF T domain were submitted to shotgun alanine scanning and Ent production selection, which revealed residues that could not be substituted by Ala. EntF mutants bearing Ala in such positions were assayed in vitro for Ent production with EntEB, and for A-T, C-T, and T-TE communications. We concluded that G1027A and M1030A are specifically defective in acyl transfer from T to TE. These residues define an interaction surface between these two in cis domains in an NRPS module.
        
Title: Effect of alcohols and temperature on the direct chiral resolutions of fipronil, isocarbophos and carfentrazone-ethyl Wang P, Jiang S, Liu D, Jia G, Wang Q, Zhou Z Ref: Biomedical Chromatography, 19:454, 2005 : PubMed
The enantiomeric separations of three pesticides fipronil (asymmetric nitrogen), isocarbophos (asymmetric phosphorus) and carfentrazone-ethyl (asymmetric carbon) were studied on cellulose-tri(3,5-dimethylphenylcarbamate) chiral stationary phase using high-performance liquid chromatography under normal phase. The mobile phase was n-hexane with alcohols including ethanol, n-propanol, iso-propanol, n-butanol and iso-butanol as polar modifiers. The flow rate was 1.0 mL/min with UV detection at 280, 225 and 230 nm for fipronil, isocarbophos and carfentrazone-ethyl respectively. The influence of the modifiers and their volume content and temperature from 0 to 50 degrees C on the separations was investigated. The chiral stationary phase showed excellent stereoselectivity for the two enantiomers of fipronil and isocarbophos and certain chiral recognition for carfentrazone-ethyl. Iso-propanol was more suitable for the chiral separation of isocarbophos and carfentrazone-ethyl, and iso-butanol was better for fipronil. The resolutions increased with the decreasing modifier content and temperature for all the three chiral pesticides.
The changes of N-methyl-D-aspartate (NMDA) receptor and protective efficacy of memantine (MEM) in rats poisoned with dichlorvos were studied. Dichlorvos evoked down-regulation of the affinity and density of [(3)H]MK-801 binding to NMDA receptor in the brain of rats receiving dichlorvos (15 and 25 mg/kg bw, i.p.). The binding capacity of NMDA receptor and acetylcholinesterase activity were determined at 4 h, 8 h, 16 h, 24 h and 48 h after treatment. When rats were given a different doses of MEM (5, 15 and 45 mg/kg bw) after poisoning (dichlorvos 25 mg/kg bw), the latency of onset of signs was postponed and the magnitude of muscular fasciculation was alleviated as the dose of MEM increased. The lower doses of MEM (5 and 15 mg/kg bw) could antagonize the dichlorvos-evoked down-regulation of NMDA receptor, while the highest dose (45 mg/kg bw) decreased the Bmax and Kd values of NMDA receptors. These results show the dichlorvos-evoked down-regulation of NMDA receptor might be self-regulation by the body to protect the central nervous system. MEM could antagonize the down-regulation of NMDA receptors, and alleviated signs of poisoning, especially reducing the magnitude of muscular fasciculation. We suggest that the role of NMDA receptor in organophosphates (OP) poisoning should receive more attention, and, that MEM treatment in acute OP poisoning, as a supplement to atropine and oxime, should be considered.
        
Title: [The acute effects of dimethoate on the muscarinic-receptors of rat brains and the relationship between muscarinic-receptors and cholinesterase] Sun Y, Zhou Z, Hu Y, Chen J, Jin T Ref: Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi, 20:293, 2002 : PubMed
OBJECTIVE: To study the acute effects of dimethoate on the muscarinic-receptors(M1, M2) in the brain of rats. METHODS: 24 Sprague-Dawley rats were divided into 4 groups randomly. They were administered subcutaneously with 0, 25, 50, 100 mg/kg dimethoate, respectively. Brains were removed after 48 hours of administration. Radioligand binding assay was used to determine the density and affinity of M1 and M2 receptors. RESULTS: Rats in the treated group showed low density of M1 and M2 receptors compared with the control rats. The brain M1 receptor density of the rats in the highest dosage group was significantly lower than that in the control group while brain M2 receptors density had a decrease trend with increasing dosage, but the difference showed no significance. However, there were no differences of the affinity of both M1 and M2 among different treated groups. Correlation analysis showed there is positive relationship between cholinesterase activity and density of M1 receptors(r = 0.583, P < 0.01). CONCLUSION: M1 and M2 receptors density decreased with the increasing dosage of dimethoate. It is suggested that the alleviating of cholinergic symptoms may be due to the decrease of M1 and M2 receptors in rat brain.
We report the cloning and expression pattern of a novel N-myc downstream-regulated gene 3 (NDRG3), located on human chromosome 20q11.21-11.23. The NDRG3 cDNA is 2588 base pair in length, encoding a 363 amino acid polypeptide highly related to mouse Ndr3 protein. Northern blot reveals that NDRG3 is highly expressed in testis, prostate and ovary. By in situ hybridization, the NDRG3 mRNA was localized to the outer layers of seminiferous epithelium, indicating that it may play a role in spermatogenesis.
        
Title: Heterogeneity of the glutathione transferase genes encoding enzymes responsible for insecticide degradation in the housefly Syvanen M, Zhou Z, Wharton J, Goldsbury C, Clark A Ref: Journal of Molecular Evolution, 43:236, 1996 : PubMed
One of the four glutathione-S-transferases (GST) that is overproduced in the insecticide-resistant Cornell-R strain of the housefly (Musca domestica) produces an activity that degrades the insecticide dimethyl parathion and conjugates glutathione to lindane. In earlier work, it was shown that the resistant Cornell-R carries an amplification, probably a duplication, of one or more of its GST loci and that this amplification is directly related to resistance. Using polymerase chain reaction (PCR) amplification with genomic DNA, multiple copies of the gene encoding the parathion-degrading activity (called MdGst-3) were subcloned from both the ancestral, insecticide-susceptible strain BPM and from the insecticide-resistant Cornell-R. In BPM, three different MdGst-3 genes were identified while in Cornell-R, 12 different MdGst-3 sequences were found that, though closely related to ancestral genes, had diverged by a few nucleotides. This diversity in MdGst-3 genomic sequences in Cornell-R is reflected in the expressed sequences, as sampled through a cDNA bank. Population heterozygosity cannot account for these multiple GST genes. We suggest that selection for resistance to insecticides has resulted in not only amplification of the MdGst-3 genes but also in the divergence of sequence between the amplified copies.
        
Title: Calcium permeability of nicotinic acetylcholine receptor channels in bovine adrenal chromaffin cells Zhou Z, Neher E Ref: Pflugers Arch, 425:511, 1993 : PubMed
The fractional contribution of Ca to current flow through neuronal-type nicotinic acetylcholine receptor channels was determined by quantitative fluorescence microfluorimetry using fura-2. The method, which has been applied already to several types of cells and channels is described in detail here. At -70 mV and 2 mM external Ca concentration it was found that Ca contributes 2.5% to the net current. The fractional contribution was found to be voltage dependent, increasing at negative potentials e-fold for a 110 mV potential difference. Total non-specific cation current was found to have a bell-shaped dependence on external Ca concentration peaking at 2 mM.