The identification and annotation of protein-coding genes is one of the primary goals of whole-genome sequencing projects, and the accuracy of predicting the primary protein products of gene expression is vital to the interpretation of the available data and the design of downstream functional applications. Nevertheless, the comprehensive annotation of eukaryotic genomes remains a considerable challenge. Many genomes submitted to public databases, including those of major model organisms, contain significant numbers of wrong and incomplete gene predictions. We present a community-based reannotation of the Aspergillus nidulans genome with the primary goal of increasing the number and quality of protein functional assignments through the careful review of experts in the field of fungal biology.
The filamentous fungus Aspergillus niger is widely exploited by the fermentation industry for the production of enzymes and organic acids, particularly citric acid. We sequenced the 33.9-megabase genome of A. niger CBS 513.88, the ancestor of currently used enzyme production strains. A high level of synteny was observed with other aspergilli sequenced. Strong function predictions were made for 6,506 of the 14,165 open reading frames identified. A detailed description of the components of the protein secretion pathway was made and striking differences in the hydrolytic enzyme spectra of aspergilli were observed. A reconstructed metabolic network comprising 1,069 unique reactions illustrates the versatile metabolism of A. niger. Noteworthy is the large number of major facilitator superfamily transporters and fungal zinc binuclear cluster transcription factors, and the presence of putative gene clusters for fumonisin and ochratoxin A synthesis.
Cytochrome P450 enzyme systems are found throughout nature and are involved in many different, often complex, bioconversions. In the endoplasmic reticulum of the filamentous fungus Aspergillus niger a cytochrome P450 enzyme system is present that is capable of the para-hydroxylation of benzoate. The expression of the two genes encoding the components of this system, the cytochrome P450 gene encoding benzoate para-hydroxylase (bphA) and the gene encoding cytochrome P450 reductase (cprA), is inducible by benzoate. The BPH system was used as a model system to study the mechanisms that result in co-regulation of both components of an eukaryote cytochrome P450 enzyme system. Deletion analysis of the transcription control regions of cprA and bphA resulted in the identification of a region that was involved in benzoate induction of gene expression. The functional competence of the cprA Benzoate Responsive Region thus defined was demonstrated directly by cloning this fragment upstream of a constitutively expressed mini-promoter and analysing expression of the hybrid transcription control region in a lacZ reporter system. Further analysis of cprA gene expression revealed a clear quantitative discrepancy between induction at the protein level (approximately 4-fold) and at the transcription level (> 20-fold). The majority of the transcripts observed after benzoate induction (cprAbeta) were larger then the constitutively expressed cprAalpha transcript. The difference in size between the cprAalpha and cprAbeta transcript is caused by differential promoter use. As the longer cprAbeta transcript carries a small uORF we propose that post-transcriptional regulation of CPR expression underlies the discrepancy in the degree of induction at the protein and transcriptional level. Our results show that regulation of CPR expression is particularly complex, involving regulatory promoter elements, differential promoter use and regulation at the post-transcriptional level.
Several cutinase variants derived by molecular modelling and site-directed mutagenesis of a cutinase gene from Fusarium solani pisi are poorly secreted by Saccharomyces cerevisiae. The majority of these variants are successfully produced by the filamentous fungus Aspergillus awamori. However, the L51S and T179Y mutations caused reductions in the levels of extracellular production of two cutinase variants by A. awamori. Metabolic labelling studies were performed to analyze the bottleneck in enzyme production by the fungus in detail. These studies showed that because of the single L51S substitution, rapid extracellular degradation of cutinase occurred. The T179Y substitution did not result in enhanced sensitivity towards extracellular proteases. Presumably, the delay in the extracellular accumulation of this cutinase variant is caused by the enhanced hydrophobicity of the molecule. Overexpression of the A. awamori gene encoding the chaperone BiP in the cutinase-producing A. awamori strains had no significant effect on the secretion efficiency of the cutinases. A cutinase variant with the amino acid changes G28A, A85F, V184I, A185L, and L189F that was known to aggregate in the endoplasmic reticulum of S. cerevisiae, resulting in low extracellular protein levels, was successfully produced by A. awamori. An initial bottleneck in secretion occurred before or during translocation into the endoplasmic reticulum but was rapidly overcome by the fungus.
A synthetic derivative of the cutinase cDNA of Fusarium solani pisi was expressed in Aspergillus awamori using the A. awamori endoxylanase II (exlA) promoter and terminator. The influence of the origin of the pre-sequence and the presence of a pro-sequence on the efficiency of extracellular cutinase production was analysed in single-copy transformants containing an expression cassette integrated at the pyrG locus. Transformants containing a construct encoding a direct, inframe fusion of the xylanase pre-peptide to the mature cutinase showed a 2-fold higher cutinase production level compared to strains containing constructs with an additional cutinase pro-peptide. The effect of multicopy integration of the expression cassette on cutinase production was analysed in strains with different numbers of a cutinase construct containing its own pre-pro-sequence. The multicopy strains showed a 6-to 12-fold increased production of extracellular cutinase relative to the single-copy strains. No linear dose response relation to the number of expression cassettes present in the strains was observed. The amount of active enzyme produced by the strains correlated with the amount of cutinase-specific mRNA, suggesting that cutinase overproduction is not limited at the level of translation or secretion.
A copy of the cutinase cDNA from Fusarium solani pisi was constructed starting from synthetic oligonucleotides. For this construction three separate cassettes were made, which were subsequently assembled to form the cutinase gene. Heterologous expression of the synthetic cutinase gene and the subsequent secretion of the recombinant enzyme was achieved in Saccharomyces cerevisiae and Aspergillus awamori.